30 resultados para rule-based algorithms
Resumo:
Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.
Resumo:
As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Subcycling algorithms which employ multiple timesteps have been previously proposed for explicit direct integration of first- and second-order systems of equations arising in finite element analysis, as well as for integration using explicit/implicit partitions of a model. The author has recently extended this work to implicit/implicit multi-timestep partitions of both first- and second-order systems. In this paper, improved algorithms for multi-timestep implicit integration are introduced, that overcome some weaknesses of those proposed previously. In particular, in the second-order case, improved stability is obtained. Some of the energy conservation properties of the Newmark family of algorithms are shown to be preserved in the new multi-timestep extensions of the Newmark method. In the first-order case, the generalized trapezoidal rule is extended to multiple timesteps, in a simple way that permits an implicit/implicit partition. Explicit special cases of the present algorithms exist. These are compared to algorithms proposed previously. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
Spatial data has now been used extensively in the Web environment, providing online customized maps and supporting map-based applications. The full potential of Web-based spatial applications, however, has yet to be achieved due to performance issues related to the large sizes and high complexity of spatial data. In this paper, we introduce a multiresolution approach to spatial data management and query processing such that the database server can choose spatial data at the right resolution level for different Web applications. One highly desirable property of the proposed approach is that the server-side processing cost and network traffic can be reduced when the level of resolution required by applications are low. Another advantage is that our approach pushes complex multiresolution structures and algorithms into the spatial database engine. That is, the developer of spatial Web applications needs not to be concerned with such complexity. This paper explains the basic idea, technical feasibility and applications of multiresolution spatial databases.
Resumo:
We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.
Resumo:
Incremental parsing has long been recognized as a technique of great utility in the construction of language-based editors, and correspondingly, the area currently enjoys a mature theory. Unfortunately, many practical considerations have been largely overlooked in previously published algorithms. Many user requirements for an editing system necessarily impact on the design of its incremental parser, but most approaches focus only on one: response time. This paper details an incremental parser based on LR parsing techniques and designed for use in a modeless syntax recognition editor. The nature of this editor places significant demands on the structure and quality of the document representation it uses, and hence, on the parser. The strategy presented here is novel in that both the parser and the representation it constructs are tolerant of the inevitable and frequent syntax errors that arise during editing. This is achieved by a method that differs from conventional error repair techniques, and that is more appropriate for use in an interactive context. Furthermore, the parser aims to minimize disturbance to this representation, not only to ensure other system components can operate incrementally, but also to avoid unfortunate consequences for certain user-oriented services. The algorithm is augmented with a limited form of predictive tree-building, and a technique is presented for the determination of valid symbols for menu-based insertion. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less magical, and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature real-world problem relating to the lengths of paths in a network.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.