91 resultados para row arrangement
Resumo:
A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.
Resumo:
This paper describes experiments using optical tweezers to probe chloroplast arrangement, shape and consistency in cells of living leaf tissue and in suspension. Dual optical tweezers provided two-point contact on a single chloroplast or two-point contact on two adhered chloroplasts for manipulation in suspension. Alternatively, a microstirrer consisting of a birefringent particle trapped in an elliptically polarized laser trap was used to induce motion and tumbling of a selected chloroplast suspended in a solution. We demonstrate that displacement of chloroplasts inside the cell is extremely difficult, presumably due to chloroplast adhesion to the cytoskeleton and connections between organelles. The study also confirms that the chloroplasts are very thin and extremely cup-shaped with a concave inner surface and a convex outer surface.
Resumo:
The dnaA region of Wolbachia, an intracellular bacterial parasite of insects, is unique. A glnA cognate was found upstream of the dnaA gene, while neither of the two open reading frames detected downstream of dnaA has any homologue in the database. This unusual gene arrangement may reflect requirements associated with the unique ecological niche this agent occupies.
Resumo:
The A(n-1)((1)) trigonometric vertex model with generic non-diagonal boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained.
Resumo:
Pholeohedra overstreeti n. g., n. sp. (Digenea: Haploporidae) is described from Girella zebra (Kyphosidae) in South Australia. The new genus is compared with all genera of Haploporidae sensu late (including Atractotrematidae, Megasolenidae and Waretrematidae) and has a unique bell-shaped concavity at its posterior end. The genus otherwise resembles Hapladena in the arrangement of the testis, vitellarium and gut but also resembles Megasolena, Metamegasolena and Vitellibaculum except in having a single testis. This is the first haploporid reported from kyphosid fishes in Australia.
Resumo:
A sensitive near-resonant four-wave mixing technique based on two-photon parametric four-wave mixing has been developed. Seeded parametric four-wave mixing requires only a single laser as an additional phase matched seeder field is generated via parametric four-wave mixing of the pump beam in a high gain cell. The seeder field travels collinearly with the pump beam providing efficient nondegenerate four-wave mixing in a second medium. This simple arrangement facilitates the detection of complex molecular spectra by simply scanning the pump laser. Seeded parametric four-wave mixing is demonstrated in both a low pressure cell and an air/acetylene flame with detection of the two-photon C (2) Pi(upsilon'=0)<--X (2) Pi(upsilon =0) spectrum of nitric oxide. From the cell data a detection limit of 10(12) molecules/cm(3) is established. A theoretical model of seeded parametric four-wave mixing is developed from existing parametric four-wave mixing theory. The addition of the seeder field significantly modifies the parametric four-wave mixing behaviour such that in the small signal regime, the signal intensity can readily be made to scale as the cube of the laser pump power while the density dependence follows a more familiar square law dependence, In general, we find excellent agreement between theory and experiment. Limitations to the process result from an ac Stark shift of the two-photon resonance in the high pressure seeder cell caused by the generation of a strong seeder field, as well as a reduction in phase matching efficiency due to the presence of certain buffer species. Various optimizations are suggested which should overcome these limitations, providing even greater detection sensitivity. (C) 1998 American Institute of Physics, [S0021-9606(98)01014-9].
Resumo:
The corneal structure of three deep-sea species of teleosts (Gadiformes, Teleostei) from different depths (250-4000 m) and photic zones are examined at the level of the light and electron microscopes. Each species shows a similar but complex arrangement of layers with a cornea split into dermal and scleral components. The dermal cornea comprises an epithelium overlying a basement membrane and a dermal stroma with sutures and occasional keratocytes. Nezumia aequalis is the only species to possess a Bowman's layer, although it is not well-developed. The scleral cornea is separated from the dermal cornea by a mucoid layer and, in contrast to shallow-water species, is divided into three main layers; an anterior scleral stroma, a middle or iridescent layer and a posterior scleral stroma. The iridescent layer of collagen and intercalated cells or cellular processes is bounded by a layer of cells and the posterior scleral stroma overlies a Descemet's membrane and an endothelium. In the relatively shallow-water Microgadus proximus, the keratocytes of the dermal stroma, the cells of the iridescent layer and the endothelial cells all contain aligned endoplasmic reticulum, which may elicit an iridescent reflex. No alignment of the endoplasmic reticulum was found in N. aequalis or Coryphanoides (Nematonurus) armatus. The relative differences between shallow-water and deep-sea corneas are discussed in relation to the constraints of light, depth and temperature.
Resumo:
Physiological and kinematic data were collected from elite under-19 rugby union players to provide a greater understanding of the physical demands of rugby union. Heart rate, blood lactate and time-motion analysis data were collected from 24 players (mean +/- s((x) over bar): body mass 88.7 +/- 9.9 kg, height 185 +/- 7 cm, age 18.4 +/- 0.5 years) during six competitive premiership fixtures. Six players were chosen at random from each of four groups: props and locks, back row forwards, inside backs, outside backs. Heart rate records were classified based on percent time spent in four zones (>95%, 85-95%, 75-84%, <75% HRmax). Blood lactate concentration was measured periodically throughout each match, with movements being classified as standing, walking, jogging, cruising, sprinting, utility, rucking/mauling and scrummaging. The heart rate data indicated that props and locks (58.4%) and back row forwards (56.2%) spent significantly more time in high exertion (85-95% HRmax) than inside backs (40.5%) and outside backs (33.9%) (P < 0.001). Inside backs (36.5%) and outside backs (38.5%) spent significantly more time in moderate exertion (75-84% HRmax) than props and locks (22.6%) and back row forwards (19.8%) (P < 0.05). Outside backs (20.1%) spent significantly more time in low exertion (< 75% HRmax) than props and locks (5.8%) and back row forwards (5.6%) (P < 0.05). Mean blood lactate concentration did not differ significantly between groups (range: 4.67 mmol.l(-1) for outside backs to 7.22 mmol.l(-1) for back row forwards; P < 0.05). The motion analysis data indicated that outside backs (5750 m) covered a significantly greater total distance than either props and locks or back row forwards (4400 and 4080 m, respectively; P < 0.05). Inside backs and outside backs covered significantly greater distances walking (1740 and 1780 m, respectively; P < 0.001), in utility movements (417 and 475 m, respectively; P < 0.001) and sprinting (208 and 340 m, respectively; P < 0.001) than either props and locks or back row forwards (walking: 1000 and 991 m; utility movements: 106 and 154 m; sprinting: 72 and 94 m, respectively). Outside backs covered a significantly greater distance sprinting than inside backs (208 and 340 m, respectively; P < 0.001). Forwards maintained a higher level of exertion than backs, due to more constant motion and a large involvement in static high-intensity activities. A mean blood lactate concentration of 4.8-7.2 mmol.l(-1) indicated a need for 'lactate tolerance' training to improve hydrogen ion buffering and facilitate removal following high-intensity efforts. Furthermore, the large distances (4.2-5.6 km) covered during, and intermittent nature of, match-play indicated a need for sound aerobic conditioning in all groups (particularly backs) to minimize fatigue and facilitate recovery between high-intensity efforts.
Resumo:
A method for the accurate computation of the current densities produced in a wide-runged bi-planar radio-frequency coil is presented. The device has applications in magnetic resonance imaging. There is a set of opposing primary rungs, symmetrically placed on parallel planes and a similar arrangement of rungs on two parallel planes surrounding the primary serves as a shield. Current densities induced in these primary and shielding rungs are calculated to a high degree of accuracy using an integral-equation approach, combined with the inverse finite Hilbert transform. Once these densities are known, accurate electrical and magnetic fields are then computed without difficulty. Some test results are shown. The method is so rapid that it can be incorporated into optimization software. Some preliminary fields produced from optimized coils are presented.
Resumo:
The morphological development of the photoreceptor mosaic was followed by light and electron microscopy in a specific region of dorsal retina of the black bream, Acanthopagrus butcheri (Sparidae, Teleostei), from hatching to eight weeks of age. The retina was differentiated when the larvae reached a total length of 3 mm (3-5 days posthatch). Single cones, arranged in tightly packed rows, were the only morphologically distinct type of photoreceptor present until the larvae were 6 mm (day 15) in standard length (SL). At this time, the rad nuclei had become differentiated and the ellipsoids of selected cones began to form subsurface cisternae along neighbouring cone membranes. In this way, double, triple, quadruple, and occasionally photoreceptor chains of up to 10 cones were formed. At 8 mm SL, there was little apparent order in the photoreceptor mosaic. However, concomitant with subsequent growth, quadruple and other multiple cone receptors disappeared, with the exception of the triple cones, which gradually reduced in both number and retinal coverage to be restricted to central retina by 15 mm SL (days 40-55). Following this stage, the arrangement of double and single cones peripheral to the region of triple cones in dorsal retina was transformed into the adult pattern of a regular mosaic of four double cones surrounding a single cone. These results demonstrate that an established photoreceptor mosaic of rows of single cones can be reorganised to form a regular square mosaic composed of single and double cones. J. Comp. Neural. 412:203-217, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
Confocal scanning laser microscopic observations were made on live chloroplasts in intact cells and on mechanically isolated, intact chloroplasts. Chlorophyll fluorescence was imaged to observe thylakoid membrane architecture. C-3 plant species studied included Spinacia oleracea L., Spathiphyllum sp. Schott, cv. 'Mauna Loa', and Pisum sativum L. C-4 plants were also investigated: Saccharum officinarum L., Sorghum bicolor L. Moench, Zea mays L. and Panicum miliaceum L. Some Spinacia chloroplasts were treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to enhance or sodium dithionite (SD) to reduce the photosystem II fluorescence signal. Confocal microscopy images of C-3 chloroplasts differed from electron microscopy pictures because they showed discrete spots of bright fluorescence with black regions between them. There was no evidence of fluorescence from stroma thylakoids. The thylakoid membrane system at times appeared to be string-like, with brightly fluorescing grana lined up like beads. C-4 bundle sheath chloroplasts were imaged from three different types of C-4 plants. Saccharum and Sorghum bundle sheath chloroplasts showed homogeneous fluorescence and were much dimmer than mesophyll chloroplasts. Zea had rudimentary grana, and dim, homogeneous intergrana fluorescence was visualised. Panicum contained thylakoids similar in appearance and string-like arrangement to mesophyll chloroplasts. Isolated Pisum chloroplasts, treated with a drop of 5 mM MgCl2 showed a thylakoid membrane system which appeared to be unravelling. Spongy mesophyll chloroplasts of Spinacia treated with 5 mM sodium dithionite showed a granal thylakoid system with distinct regions of no fluorescence. A time-series experiment provided evidence of dynamic membrane rearrangements over a period of half an hour.