33 resultados para ring contraction
Resumo:
Sm and Sm-like proteins are key components of small ribonucleoproteins involved in many RNA and DNA processing pathways. In eukaryotes, these complexes contain seven unique Sm or Sm-like (Lsm) proteins assembled as hetero-heptameric rings, whereas in Archaea and bacteria six or seven-membered rings are made from only a single polypeptide chain. Here we show that single Sm and Lsm proteins from yeast also have the capacity to assemble into homo-oligomeric rings. Formation of homo-oligomers by the spliceosomal small nuclear ribonucleoprotein components SmE and SmF preclude hetero-interactions vital to formation of functional small nuclear RNP complexes in vivo. To better understand these unusual complexes, we have determined the crystal structure of the homomeric assembly of the spliceosomal protein SmF. Like its archaeal/bacterial homologs, the SmF complex forms a homomeric ring but in an entirely novel arrangement whereby two heptameric rings form a co-axially stacked dimer via interactions mediated by the variable loops of the individual SmF protein chains. Furthermore, we demonstrate that the homomeric assemblies of yeast Sm and Lsm proteins are capable of binding not only to oligo(U) RNA but, in the case of SmF, also to oligo(dT) single-stranded DNA.
Resumo:
Little consensus exists in the literature regarding methods for determination of the onset of electromyographic (EMG) activity. The aim of this study was to compare the relative accuracy of a range of computer-based techniques with respect to EMG onset determined visually by an experienced examiner. Twenty-seven methods were compared which varied in terms of EMG processing (low pass filtering at 10, 50 and 500 Hz), threshold value (1, 2 and 3 SD beyond mean of baseline activity) and the number of samples for which the mean must exceed the defined threshold (20, 50 and 100 ms). Three hundred randomly selected trials of a postural task were evaluated using each technique. The visual determination of EMG onset was found to be highly repeatable between days. Linear regression equations were calculated for the values selected by each computer method which indicated that the onset values selected by the majority of the parameter combinations deviated significantly from the visually derived onset values. Several methods accurately selected the time of onset of EMG activity and are recommended for future use. Copyright (C) 1996 Elsevier Science Ireland Ltd.
Resumo:
Background and Purpose. Activity of the trunk muscles is essential for maintaining stability of the lumbar spine because of the unstable structure of that portion of the spine. A model involving evaluation of the response of the lumbar multifidus and abdominal muscles to leg movement was developed to evaluate this function. Subjects. To examine this function in healthy persons, 9 male and 6 female subjects (mean age = 20.6 years, SD = 2.3) with no history of low back pain were studied. Methods. Fine-wire and surface electromyography electrodes were used to record the activity of selected trunk muscles and the prime movers for hip flexion, abduction, and extension during hip movements in each of these directions. Results. Trunk muscle activity occurring prior to activity of the prime mover of the limb was associated with hip movement in each direction. The transversus abdominis (TrA) muscle was invariably the first muscle that was active. Although reaction time for the TrA and oblique abdominal muscles was consistent across movement directions, reaction time for the rectus abdominis and multifidus muscles varied with the direction of limb movement. Conclusion and Discussion. Results suggest that the central nervous st stem deals with stabilization of the spine by contraction of the abdominal and multifidus muscles in anticipation of reactive forces produced by limb movement. The TrA and oblique abdominal muscles appear to contribute to a function not related to the direction of these forces.
Resumo:
Because the structure of the spine is inherently unstable, muscle activation is essential for the maintenance of trunk posture and intervertebral control when the limbs are moved. To investigate how the central nervous system deals with this situation the temporal components of the response of the muscles of the trunk were evaluated during rapid limb movement performed in response to a visual stimulus. Fine-wire electromyography (EMG) electrodes were inserted into transversus abdominis (TrA), obliquus internus abdominis (OI) and obliquus externus abdominis (OE) of 15 subjects under the guidance of real-time ultrasound imaging. Surface electrodes were placed over rectus abdominis (RA), lumbar multifidus (MF) and the three parts of deltoid. In a standing position, ten repetitions of shoulder flexion, abduction and extension were performed by the subjects as fast as possible in response to a visual stimulus. The onset of TrA EMG occurred in advance of deltoid irrespective of the movement direction. The time to onset of EMC activity of OI, OE, RA and MF varied with the movement direction, being activated earliest when the prime action of the muscle opposed the reactive forces associated with the specific limb movement. It is postulated that the non-direction-specific contraction of TrA may be related to the control of trunk. stability independent of the requirement for direction-specific control of the centre of gravity in relation to the base of support.
Resumo:
We report experimental studies of metastable chaos in the far-infrared ammonia ring: laser. When the laser pump power is switched from above chaos threshold to slightly below, chaotic intensity pulsations continue for a varying time afterward before decaying to either periodic or cw emission. The behavior is in good qualitative agreement with that predicted by the Lorenz equations, previously used to describe this laser. The statistical distribution of the duration of the chaotic transient is measured and shown to be in excellent agreement with the Lorenz equations in showing a modified exponential distribution. We also give a brief numerical analysis and graphical visualization of the Lorenz equations in phase space illustrating the boundary between the metastable chaotic and the stable fixed point basins of attraction. This provides an intuitive understanding of the metastable dynamics of the Lorenz equations and the experimental system.
Resumo:
Rapid shoulder movement is preceded by contraction of the abdominal muscles to prepare the body for the expected disturbance to postural equilibrium and spinal stability provoked by the reactive forces resulting from the movement. The magnitude of the reactive forces is proportional to the inertia of the limb. The aim of the study was to investigate if changes in the reaction time latency of the abdominal muscles was associated with variation in the magnitude of the reactive forces resulting from variation in limb speed. Fifteen participants performed shoulder flexion at three different speeds (fast, natural and slow). The onset of EMG of the abdominal muscles, erector spinae and anterior deltoid (AD) was recorded using a combination of fine-wire and surface electrodes. Mean and peak velocity was recorded for each limb movement speed for five participants. The onset of transversus abdominis (TrA) EMG preceded the onset of AD in only the fast movement condition. No significant difference in reaction time latency was recorded between the fast and natural speed conditions for all muscles. The reaction time of each of the abdominal muscles relative to AD was significantly delayed with the slow movement compared to the other two speeds. The results indicate that the reaction time latency of the trunk muscles is influenced by limb inertia only with limb movement below a threshold velocity.
Resumo:
Grobner bases have been generalised to polynomials over a commutative ring A in several ways. Here we focus on strong Grobner bases, also known as D-bases. Several authors have shown that strong Grobner bases can be effectively constructed over a principal ideal domain. We show that this extends to any principal ideal ring. We characterise Grobner bases and strong Grobner bases when A is a principal ideal ring. We also give algorithms for computing Grobner bases and strong Grobner bases which generalise known algorithms to principal ideal rings. In particular, we give an algorithm for computing a strong Grobner basis over a finite-chain ring, for example a Galois ring.
Resumo:
The internal flexibility of the central seven-membered ring of a series of tricyclic antidepressant drugs (TCAs), imipramine {l}, amitriptyline {2}, doxepin {3}, and dothiepin {4}, has been investigated by H-1 and C-13 nuclear magnetic (NMR) techniques. Two dynamic processes were examined: ring inversion and bridge flexing. H-1 NMR lineshape analysis was used to obtain ring inversion barriers for 2-4. These studies yielded energy barriers of 14.3, 16.7, and 15.7 +/- 0.6 kcal/mol for the hydrochloride salts of doxepin, dothiepin, and amitriptyline, respectively. The barriers for the corresponding free bases were lower by 0.6 kcal/mol on average. (CT1)-C-13 relaxation measurements were used to determine the degree of bridge flexing associated with the central seven-membered ring for all four compounds. By fitting the T-1 data to a two-state jump model, lifetimes and amplitudes of rapid bridge flexing motions were determined. The results show that imipramine has the fastest rate of bridge flexing, followed by amitriptyline, doxepin, and dothiepin. The pharmacological profiles of the TCAs are complex and they interact with many receptor sites, resulting in numerous side effects and a general lack of understanding of their precise mode of action in different anxiety-related disorders. They all have similar three-dimensional structures, which makes it difficult to rationalize their differing relative potency in different assays/clinical settings. However, the clear finding here that there are significantly different degrees of internal mobility suggests that molecular dynamics should be an additional factor considered when trying to understand the mode of action of this clinically important family of molecules. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:713-721, 2001.
Resumo:
We compared changes in muscle fibre composition and muscle strength indices following a 10 week isokinetic resistance training programme consisting of fast (3.14 rad(.)s(-1)) or slow (0.52 rad(.)s(-1)) velocity eccentric muscle contractions. A group of 20 non-resistance trained subjects were assigned to a FAST (n = 7), SLOW (n = 6) or non-training CONTROL (n = 7) group. A unilateral training protocol targeted the elbow flexor muscle group and consisted of 24 maximal eccentric isokinetic contractions (four sets of six repetitions) performed three times a week for 10 weeks. Muscle biopsy samples were obtained from the belly of the biceps brachii. Isometric torque and concentric and eccentric torque at 0.52 and 3.14 rad(.)s(-1) were examined at 0, 5 and 10 weeks. After 10 weeks, the FAST group demonstrated significant [mean (SEM)] increases in eccentric [29.6 (6.4)%] and concentric torque [27.4 (7.3) %] at 3.14 rad(.)s(-1), isometric torque [21.3 (4.3)%] and eccentric torque [25.2 (7.2) %] at 0.52 rad(.)s(-1). The percentage of type I fibres in the FAST group decreased from [53.8 (6.6)% to 39.1 (4.4)%] while type lib fibre percentage increased from [5.8 (1.9)% to 12.9 (3.3)%; P < 0.05]. In contrast. the SLOW group did not experience significant changes in muscle fibre type or muscle torque. We conclude that neuromuscular adaptations to eccentric training stimuli may be influenced by differences in the ability to cope with chronic exposure to relatively fast and slow eccentric contraction velocities. Possible mechanisms include greater cumulative damage to contractile tissues or stress induced by slow eccentric muscle contractions.
Resumo:
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC). Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC > 70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
To investigate the ability of ultrasonography to estimate musactivity, we measured architectural parameters (pennation angles, fascicle lengths, and muscle thickness) of several human muscles (tibialis anterior, biceps brachii, brachialis, transversus abdominis, obliquus internus abdominis, and obliquus externus abdominis) during isometric contractions of from 0 to 100% maximal voluntary contraction (MVC). Concurrently, electromyographic (EMG) activity was measured with surface (tibialis anterior only) or fine-wire electrodes. Most architectural parameters changed markedly with contractions up to 30% MVC but changed little at higher levels of contraction. Thus, ultrasound imaging can be used to detect low levels of muscle activity but cannot discriminate between moderate and strong contractions. Ultrasound measures could reliably detect changes in EMG of as little as 4% MVC (biceps muscle thickness), 5% MVC (brachialis muscle thickness), or 9% MVC (tibialis anterior pennation angle). They were generally less sensitive to changes in abdominal muscle activity, but it was possible to reliably detect contractions of 12% MVC in transversus abdominis (muscle length) and 22% MVC in obliquus internus (muscle thickness). Obliquus externus abdominis thickness did not change consistently with muscle contraction, so ultrasound measures of thickness cannot be used to detect activity of this muscle. Ultrasound imaging can thus provide a non-invasive method of detecting isometric muscle contractions of certain individual muscles.