26 resultados para regression discrete models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Objective: To examine if commonly recommended assumptions for multivariable logistic regression are addressed in two major epidemiological journals. Methods: Ninety-nine articles from the Journal of Clinical Epidemiology and the American Journal of Epidemiology were surveyed for 10 criteria: six dealing with computation and four with reporting multivariable logistic regression results. Results: Three of the 10 criteria were addressed in 50% or more of the articles. Statistical significance testing or confidence intervals were reported in all articles. Methods for selecting independent variables were described in 82%, and specific procedures used to generate the models were discussed in 65%. Fewer than 50% of the articles indicated if interactions were tested or met the recommended events per independent variable ratio of 10: 1. Fewer than 20% of the articles described conformity to a linear gradient, examined collinearity, reported information on validation procedures, goodness-of-fit, discrimination statistics, or provided complete information on variable coding. There was no significant difference (P >.05) in the proportion of articles meeting the criteria across the two journals. Conclusion: Articles reviewed frequently did not report commonly recommended assumptions for using multivariable logistic regression. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the study was to examine the relationships between Eysenck's primary personality factors and various aspects of religious orientation and practice. Some 400 UK undergraduates completed questionnaires constructed from the Batson and Schoenrade Religious Life Inventory (Batson & Schoenrade, 1991) and the Eysenck Personality Profiler (Eysenck, Barrett, Wilson, & Jackson, 1992). As is generally found, all the religious variables correlated negatively with the higher order personality factor of psychoticism. In contrast, among the primary factors, those associated with neuroticism appeared to be the strongest indicators of religiosity. In particular, all the primary traits classically linked to neuroticism correlate positively with the quest orientation. However, fewer primary traits predict religious behaviour in regression and of these, a sense of guilt is the greatest and a common predictor of extrinsic, intrinsic and quest religiosities. Upon factor analysis of the significant personality predictors together with the three religious orientations, the orientations formed a single discrete factor, which implies that extrinsic, intrinsic and quest religiosities have more in common with one another than with any of the personality traits included in the study. This suggests that religious awareness may itself be an important individual difference that is distinct from those generally associated with models of personality. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the effects of potential models on the description of equilibria of linear molecules (ethylene and ethane) adsorption on graphitized thermal carbon black. GCMC simulation is used as a tool to give adsorption isotherms, isosteric heat of adsorption and the microscopic configurations of these molecules. At the heart of the GCMC are the potential models, describing fluid-fluid interaction and solid-fluid interaction. Here we studied the two potential models recently proposed in the literature, the UA-TraPPE and AUA4. Their impact in the description of adsorption behavior of pure components will be discussed. Mixtures of these components with nitrogen and argon are also studied. Nitrogen is modeled a two-site plus discrete charges while argon as a spherical particle. GCMC simulation is also used for generating simulation mixture isotherms. It is found that co-operation between species occurs when the surface is fractionally covered while competition is important when surface is fully loaded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard factorial designs sometimes may be inadequate for experiments that aim to estimate a generalized linear model, for example, for describing a binary response in terms of several variables. A method is proposed for finding exact designs for such experiments that uses a criterion allowing for uncertainty in the link function, the linear predictor, or the model parameters, together with a design search. Designs are assessed and compared by simulation of the distribution of efficiencies relative to locally optimal designs over a space of possible models. Exact designs are investigated for two applications, and their advantages over factorial and central composite designs are demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that the process of generating smooth transitions Call be viewed as a natural result of the filtering operations implied in the generation of discrete-time series observations from the sampling of data from an underlying continuous time process that has undergone a process of structural change. In order to focus discussion, we utilize the problem of estimating the location of abrupt shifts in some simple time series models. This approach will permit its to address salient issues relating to distortions induced by the inherent aggregation associated with discrete-time sampling of continuous time processes experiencing structural change, We also address the issue of how time irreversible structures may be generated within the smooth transition processes. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting the various responses of different species to changes in landscape structure is a formidable challenge to landscape ecology. Based on expert knowledge and landscape ecological theory, we develop five competing a priori models for predicting the presence/absence of the Koala (Phascolarctos cinereus) in Noosa Shire, south-east Queensland (Australia). A priori predictions were nested within three levels of ecological organization: in situ (site level) habitat (< 1 ha), patch level (100 ha) and landscape level (100-1000 ha). To test the models, Koala surveys and habitat surveys (n = 245) were conducted across the habitat mosaic. After taking into account tree species preferences, the patch and landscape context, and the neighbourhood effect of adjacent present sites, we applied logistic regression and hierarchical partitioning analyses to rank the alternative models and the explanatory variables. The strongest support was for a multilevel model, with Koala presence best predicted by the proportion of the landscape occupied by high quality habitat, the neighbourhood effect, the mean nearest neighbour distance between forest patches, the density of forest patches and the density of sealed roads. When tested against independent data (n = 105) using a receiver operator characteristic curve, the multilevel model performed moderately well. The study is consistent with recent assertions that habitat loss is the major driver of population decline, however, landscape configuration and roads have an important effect that needs to be incorporated into Koala conservation strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Development data of eggs and pupae of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka, at constant temperatures were used to evaluate a linear and seven nonlinear models for insect development. Model evaluation was based on fit to data (residual sum of squares and coefficient of determination or coefficient of nonlinear regression), number of measurable parameters, the biological value of the fitted coefficients and accuracy in the estimation of thresholds. Of the nonlinear models, the Lactin model fitted experimental data well and along with the linear model, can be used to describe the temperature-dependent development of this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.