26 resultados para refined multiscale entropy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present theoretical predictions for the equation of state of a harmonically trapped Fermi gas in the unitary limit. Our calculations compare Monte Carlo results with the equation of state of a uniform gas using three distinct perturbation schemes. We show that in experiments the temperature can be usefully calibrated by making use of the entropy, which is invariant during an adiabatic conversion into the weakly interacting limit of molecular BEC. We predict the entropy dependence of the equation of state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a fast adaptive Importance Sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First we estimate the minimum Cross-Entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level; finally, the tilting parameter just found is used to estimate the overflow probability of interest. We recognize three distinct properties of the method which together explain why the method works well; we conjecture that they hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summarizing topological relations is fundamental to many spatial applications including spatial query optimization. In this paper, we present several novel techniques to eectively construct cell density based spatial histograms for range (window) summarizations restricted to the four most important topological relations: contains, contained, overlap, and disjoint. We rst present a novel framework to construct a multiscale histogram composed of multiple Euler histograms with the guarantee of the exact summarization results for aligned windows in constant time. Then we present an approximate algorithm, with the approximate ratio 19/12, to minimize the storage spaces of such multiscale Euler histograms, although the problem is generally NP-hard. To conform to a limited storage space where only k Euler histograms are allowed, an effective algorithm is presented to construct multiscale histograms to achieve high accuracy. Finally, we present a new approximate algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in constant time. Our extensive experiments against both synthetic and real world datasets demonstrated that the approximate mul- tiscale histogram techniques may improve the accuracy of the existing techniques by several orders of magnitude while retaining the cost effciency, and the exact multiscale histogram technique requires only a storage space linearly proportional to the number of cells for the real datasets.