150 resultados para rapid eye movement
Resumo:
Pain changes postural activation of the trunk muscles. The cause of these changes is not known but one possibility relates to the information processing requirements and the stressful nature of pain. This study investigated this possibility by evaluating electromyographic activity (EMG) of the deep and superficial trunk muscles associated with voluntary rapid arm movement. Data were collected from control trials, trials during low back pain (LBP) elicited by injection of hypertonic saline into the back muscles, trials during a non-painful attention-demanding task, and during the same task that was also stressful. Pain did not change the reaction time (RT) of the movement, had variable effects on RT of the superficial trunk muscles, but consistently increased RT of the deepest abdominal muscle. The effect of the attention-demanding task was opposite: increased RT of the movement and the superficial trunk muscles but no effect on RT of the deep trunk muscles. Thus, activation of the deep trunk muscles occurred earlier relative to the movement. When the attention-demanding task was made stressful, the RT of the movement and superficial trunk muscles was unchanged but the RT of the deep trunk muscles was increased. Thus, the temporal relationship between deep trunk muscle activation and arm movement was restored. This means that although postural activation of the deep trunk muscles is not affected when central nervous system resources are limited, it is delayed when the individual is also under stress. However, a non-painful attention-demanding task does not replicate the effect of pain on postural control of the trunk muscles even when the task is stressful.
Resumo:
Control of the neck muscles is coordinated with the sensory organs of vision, hearing and balance. For instance, activity of splenius capitis (SC) is modified with gaze shift. This interaction between eye movement and neck muscle activity is likely to influence the control of neck movement. The aim of this study was to investigate the effect of eye position on neck muscle activity during cervical rotation. In eleven subjects we recorded electromyographic activity (EMG) of muscles that rotate the neck to the right [right obliquus capitis inferior (OI), multifides (MF), and SC, and left sternocleidomastoid (SCM)] with intramuscular or surface electrodes. In sitting, subjects rotated the neck in each direction to specific points in range that were held statically with gaze either fixed to a guide (at three different positions) that moved with the head to maintain a constant intra-orbit eye position or to a panel in front of the subject. Although right SC and left SCM EMG increased with rotation to the right, contrary to anatomical texts, OI EMG increased with both directions and MF EMG did not change from the activity recorded at rest. During neck rotation SCM and MF EMG was less when the eyes were maintained with a constant intra-orbit position that was opposite to the direction of rotation compared to trials in which the eyes were maintained in the same direction as the head movement. The inter-relationship between eye position and neck muscle activity may affect the control of neck posture and movement.
Resumo:
Different interceptive tasks and modes of interception (hitting or capturing) do not necessarily involve similar control processes. Control based on preprogramming of movement parameters is possible for actions with brief movement times but is now widely rejected; continuous perceptuomotor control models are preferred for all types of interception. The rejection of preprogrammed control and acceptance of continuous control is evaluated for the timing of rapidly executed, manual hitting actions. It is shown that a preprogrammed control model is capable of providing a convincing account of observed behavior patterns that avoids many of the arguments that have been raised against it. Prominent continuous perceptual control models are analyzed within a common framework and are shown to be interpretable as feedback control strategies. Although these models can explain observations of on-line adjustments to movement, they offer only post hoc explanations for observed behavior patterns in hitting tasks and are not directly supported by data. It is proposed that rapid manual hitting tasks make up a class of interceptions for which a preprogrammed strategy is adopted-a strategy that minimizes the role of visual feedback. Such a strategy is effective when the task demands a high degree of temporal accuracy.
Resumo:
1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG-activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG-coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH(2)O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.
Resumo:
Studies of functional brain imaging in humans and single cell recordings in monkeys have generally shown preferential involvement of the medially located supplementary motor area (SMA) in self-initiated movement and the lateral premotor cortex in externally cued movement. Studies of event-related cortical potentials recorded during movement preparation, however, generally show increased cortical activity prior to self-initiated movements but little activity at early stages prior to movements that are externally cued at unpredictable times. In this study, the spatial location and relative timing of activation for self-initiated and externally triggered movements were examined using rapid event-related functional MRI. Twelve healthy right-handed subjects were imaged while performing a brief finger sequence movement (three rapid alternating button presses: index-middle-index finger) made either in response to an unpredictably timed auditory cue (between 8 to 24 s after the previous movement) or at self-paced irregular intervals. Both movement conditions involved similar strong activation of medial motor areas including the pre-SMA, SMA proper, and rostral cingulate cortex, as well as activation within contralateral primary motor, superior parietal, and insula cortex. Activation within the basal ganglia was found for self-initiated movements only, while externally triggered movements involved additional bilateral activation of primary auditory cortex. Although the level of SMA and cingulate cortex activation did not differ significantly between movement conditions, the timing of the hemodynamic response within the pre-SMA was significantly earlier for self-initiated compared with externally triggered movements. This clearly reflects involvement of the pre-SMA in early processes associated with the preparation for voluntary movement. (C) 2002 Elsevier Science.
Resumo:
Activity within motor areas of the cortex begins to increase 1 to 2 s prior to voluntary self-initiated movement (termed the Bereitschaftspotential or readiness potential). There has been much speculation and debate over the precise source of this early premovement activity as it is important for understanding the roles of higher order motor areas in the preparation and readiness for voluntary movement. In this study, we use high-field (3-T) event-related fMRI with high temporal sampling (partial brain volumes every 250 ms) to specifically examine hemodynamic response time courses during the preparation, readiness, and execution of purely self-initiated voluntary movement. Five right-handed healthy volunteers performed a rapid sequential finger-to-thumb movement performed at self-determined times (12-15 trials). Functional images for each trial were temporally aligned and the averaged time series for each subject was iteratively correlated with a canonical hemodynamic response function progressively shifted in time. This analysis method identified areas of activation without constraining hemodynamic response timing. All subjects showed activation within frontal mesial areas, including supplementary motor area (SMA) and cingulate motor areas, as well as activation in left primary sensorimotor areas. The time courses of hemodynamic responses showed a great deal of variability in shape and timing between subjects; however, four subjects clearly showed earlier relative hemodynamic responses within SMA/cingulate motor areas compared with left primary motor areas. These results provide further evidence that the SMA and cingulate motor areas are major contributors to early stage premovement activity and play an important role in the preparation and readiness for voluntary movement. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Objective: To investigate the influence of age and preparation level on postural muscle activation and step completion time during a rapid step task. Design: Postural muscle onset times (EMG) and ground reaction forces were recorded from healthy young (n = 20, age 21 +/- 3 years) and older (n = 25, age 71 +/- 5 years) female adults during a choice reaction-time stepping paradigm. Main outcome measures: Onset times of six trunk and hip muscles, reaction time and components of the step (weight shift time, step time and task time) were recorded. Results: Muscle activation was delayed and movement time was lengthened in both young and older adults when poorly prepared for a stepping task. While reduced preparation did not influence older adults to a greater extent than young adults, the slowest step response and completion time was evident in older adults when poorly prepared to move. Conclusions: A late postural response when poorly prepared to move may be a contributing factor to an increased risk of overbalancing in older adults. Future assessment of and intervention to improve postural stability in older adults should be expanded to incorporate tasks performed at various levels of preparation.
Resumo:
At least 6% of primary school aged children present with DCD, where co-ordination is substantially below the normal range for the child’s age and intelligence. Motor skill difficulties negatively affect academic achievement, recreation and activities of daily living. Poor upper-limb co-ordination is a common difficulty for children with DCD. A possible cause of this problem is deviant muscle timing in proximal muscle groups, which results in poor postural and movement control. While studies have been published investigating postural control in response to external perturbations, detail about postural muscle activity during voluntary movement is limited even in children with normal motor development. No studies have investigated the relationship between muscle timing, resultant arm motion and upper-limb coordination deficits. Objectives: To investigate the relationship between functional difficulties with upper-limb motor skills and neuromuscular components of postural stability and coordination. Specifically, to investigate onset-timing of muscle activity, timing of arm movement, and resultant three-dimensional (3D) arm co-ordination during rapid, voluntary arm movement and to analyse differences arising due to the presence of DCD. This study is part of a larger research program investigating postural stability and control of upper limb movement in children. Design: A controlled, cross-sectional study of differences between children with and without DCD. Methods: This study included 50 children aged eight to 10 years (25 with DCD and 25 without DCD). Children participated in assessment of motor skills according to the Movement ABC Test and a laboratory study of rapid, voluntary arm movements. Parameters investigated included muscle activation timing of shoulder and trunk muscles (surface electromyography), arm movement timing (light sensor) and resultant 3D arm motion (Fastrak). Results: A MANOVA is being used to analyse between-group differences. Preliminary results indicate children with DCD demonstrate altered muscle timing during a rapid arm raise when compared with the control group of children. Conclusion: Differences in proximal muscle timing in children with DCD support the hypothesis that altered proximal muscle activity may contribute to poor proximal stability and consequently poor arm movement control. This has implications for clinical physiotherapy.
Resumo:
First isolated in the fly and now characterised in vertebrates, the Slit proteins have emerged as pivotal components controlling the guidance of axonal growth cones and the directional migration of neuronal precursors. As well as extensive expression during development of the central nervous system (CNS), the Slit proteins exhibit a striking array of expression sites in non-neuronal tissues, including the urogenital system, limb primordia and developing eye. Zebrafish Slit has been shown to mediate mesodermal migration during gastrulation, while Drosophila slit guides the migration of mesodermal cells during myogenesis. This suggests that the actions of these secreted molecules are not simply confined to the sphere of CNS development, but rather act in a more general fashion during development and throughout the lifetime of an organism. This review focuses on the non-neuronal activities of Slit proteins, highlighting a common role for the Slit family in cellular migration.
Resumo:
A simple, rapid method is described for the extraction of large numbers of free-living nematodes from estuarine sediments. This method does not physically or chemically alter or damage the nematodes, but instead relies on their downward movement through a filtering layer of double ply tissue paper and into aerated water-filled trays. Seven trials each with 10 trays kept at 25degreesC for an initial period of 24 h yielded 3985 live nematodes l(-1) (+/-511.5 standard deviation) of estuarine sediment, free of sediment and with minimal debris. Time effects were statistically significantly different, with the same 10 trays yielding another 1259 nematodes l(-1) (+/-413.4) when kept for a second period of 24 h at the same temperature. Temperature effects were also significant, and 7 trials each with 10 trays kept for 24 h at 20-21degreesC, produced a lower yield of 2160 nematodes l(-1) (+/-532.7) of sediment. The method is expected to be of use in nematode extractions from both estuarine and marine sediments.
Resumo:
The purpose of this study was to examine the capacity of resistance training to enhance the rapid and coordinated production of force by older people. Thirty adults (greater than or equal to 60 years) completed a visually guided aiming task that required the generation of isometric torque in 2 df about the elbow prior to and following a 4-week training period. Groups of six participants were allocated to two progressive ( 40 - 100% maximal voluntary contraction (MVC)) resistance-training (PRT) groups, to two constant low-load (10% MVC) training groups (CLO) and to one no-training control group. Training movements required the generation of either combined flexion and supination (FLESUP), or combined extension and supination (EXTSUP). In response to training, target acquisition times in the aiming task decreased for all groups; however, both the nature of the training load and the training movement influenced the pattern and magnitude of improvements (EXTSUP_ CLO: 36%, FLESUP_ PRT 26%, EXTSUP_ PRT 22%, FLESUP_ CLO 20%, CONTROL 15%). For one group that trained with progressively increasing loads, there arose a subsequent decrease in performance in one condition of the transfer task. For each group, these adaptations were accompanied by systematic changes in the coordination of muscles about the elbow joint, particularly the biceps brachii.
Resumo:
High-fidelity eye tracking is combined with a perceptual grouping task to provide insight into the likely mechanisms underlying the compensation of retinal image motion caused by movement of the eyes. The experiments describe the covert detection of minute temporal and spatial offsets incorporated into a test stimulus. Analysis of eye motion on individual trials indicates that the temporal offset sensitivity is actually due to motion of the eye inducing artificial spatial offsets in the briefly presented stimuli. The results have strong implications for two popular models of compensation for fixational eye movements, namely efference copy and image-based models. If an efference copy model is assumed, the results place constraints on the spatial accuracy and source of compensation. If an image-based model is assumed then limitations are placed on the integration time window over which motion estimates are calculated. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The starting point of this thesis was a desire to explain the rapid demise in the popularity which the Communist Party enjoyed in Queensland during the second world war. Wartime Queensland gave the Australian Communist Party its highest state vote and six years later Queensland again gave the Communist Party its highest state vote - this time however, to ban the Party. From this I was led into exploring the changing policies, beliefs and strategies of the Party, as well as the many sub-groups on its periphery, and the shifts in public response to these. In 1939 Townsville elected Australia's first Communist alderman. Five years later, Bowen elected not only Australia's first but also the British Empire's first, Communist state government member. Of the five electorates the Australian Communist Party contested in the 1944 Queensland State elections, in none did the Party's candidate receive less than twenty per-cent of the formal vote. Not only was the Party seemingly enjoying considerable popular support but this was occurring in a State which, but for the Depression years (May 1929 - June 1932) had elected a Labor State Government at every state election since 1915. In the September 1951 Constitution Alteration Referendum, 'Powers To Deal With Communists and Communism', Queensland regist¬ered the nation's highest "Yes" majority - 55.76% of the valid vote. Only two other states registered a majority in favour of the referendum's proposals, Western Australia and Tasmania. As this research was undertaken it became evident that while various trends exhibited at the time, anti-Communism, the work of the Industrial Groups, Labor opportunism, local area feelings, ideological shifts of the Party, tactics of Communist-led unions, etc., were present throughout the entire period, they were best seen when divided into three chronological phases of the Party's history and popularity. The first period covers the consolidation of the Party's post-Depression popularity during the war years as it benefited from the Soviet Union's colossal contribution to the Allied war efforts, and this support continued for some six months or so after the war. Throughout the period Communist strength within the trade union movement greatly increased as did total Party membership. The second period was marked by a rapid series of events starting in March 1946, with Winston Churchill's "Official Opening" of the Cold War by his sweeping attack on Communism and Russia, at Fulton. Several days later the first of a series of long and bitter strikes in Communist-led unions occurred, as the Party mobil¬ized for what it believed would be a series of attacks on the working class from a ruling class, defending a capitalist system on the verge of an economic collapse. It was a period when the Party believed this ruling class was using Labor reformism as a last desperate 'carrot' to get workers to accept their lot within a capitalist economic framework. Out of the Meat Strike emerged the Industrial Groups, who waged not only a determined war against Communist trade union leadership but also encouraged the A.W.U.-influenced State Labor apparatus to even greater anti-Communist antagonisms. The Communist Party's increasing militancy and Labor's resistance to it, ended finally in the collapse of the Chifley Labor government. Characteristically the third period opens with the Communist Party making an another about-face, desperately trying to form an alliance with the Labor Party and curbing its former adventurist industrial policy, as it prepared for Menzies' direct assault. The Communist Party's activities were greatly reduced, a function of both a declining member-ship and, furthermore, a membership reluctant to confront an increasingly hostile society. In examining the changing policies, beliefs and strategies of the Party and the shifts in public response to these, I have tried to distinguish between general trends occurring within Australia and the national party, and trends peculiar to Queensland and the Queensland branch of the Party, The Communist Party suffered a decline in support and membership right across Australia throughout this period as a result of the national policies of the Party, and the changing nature of world politics. There were particular features of this decline that were peculiar to Queensland. I have, however, singled out three features of particular importance throughout the period for a short but more specifically detailed analysis, than would be possible in a purely chronological study: i.e. the Party's structure, the Party's ideological subservience to Moscow, and the general effect upon it of the Cold War.
Resumo:
Inaccurate species identification confounds insect ecological studies. Examining aspects of Trichogramma ecology pertinent to the novel insect resistance management strategy for future transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA) of Western Australia required accurate differentiation between morphologically similar Trichogramma species. Established molecular diagnostic methods for Trichogramma identification use species-specific sequence difference in the internal transcribed spacer (ITS)-2 chromosomal region; yet, difficulties arise discerning polymerase chain reaction (PCR) fragments of similar base pair length by gel electrophoresis. This necessitates the restriction enzyme digestion of PCR-amplified ITS-2 fragments to readily differentiate Trichogramma australicum Girault and Trichogramma pretiosum Riley. To overcome the time and expense associated with a two-step diagnostic procedure, we developed a “one-step” multiplex PCR technique using species-specific primers designed to the ITS-2 region. This approach allowed for a high-throughput analysis of samples as part of ongoing ecological studies examining Trichogramma biological control potential in the ORIA where these two species occur in sympatry.