68 resultados para pulp mill
Resumo:
A new device has been developed to directly measure the bubble loading of particle-bubble aggregates in industrial flotation machines, both mechanical flotation cells as well as flotation column cells. The bubble loading of aggregates allows for in-depth analysis of the operating performance of a flotation machine in terms of both pulp/collection zone and froth zone performance. This paper presents the methodology along with an example showing the excellent reproducibility of the device and an analysis of different operating conditions of the device itself. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The objective of this study is to examine the market valuation of environmental capital expenditure investment related to pollution abatement in the pulp and paper industry. The total environmental capital expenditure of $8.7 billion by our sample firms during 1989-2000 supports the focus on this industry. In order to be capitalized, an asset should be associated with future economic benefits. The existing environmental literature suggests that investors condition their evaluation of the future economic benefits arising from environmental capital expenditure on an assessment of the firms' environmental performance. This literature predicts the emergence of two environmental stereotypes: low-polluting firms that overcomply with existing environmental regulations, and high-polluting firms that just meet minimal environmental requirements. Our valuation evidence indicates that there are incremental economic benefits associated with environmental capital expenditure investment by low-polluting firms but not high-polluting firms. We also find that investors use environmental performance information to assess unbooked environmental liabilities, which we interpret to represent the future abatement spending obligations of high-polluting firms in the pulp and paper industry. We estimate average unbooked liabilities of $560 million for high-polluting firms, or 16.6 percent of market capitalization.
Resumo:
The best accepted method for design of autogenous and semi-autogenous (AG/SAG) mills is to carry out pilot scale test work using a 1.8 m diameter by 0.6 m long pilot scale test mill. The load in such a mill typically contains 250,000-450,000 particles larger than 6 mm, allowing correct representation of more than 90% of the charge in Discrete Element Method (DEM) simulations. Most AG/SAG mills use discharge grate slots which are 15 mm or more in width. The mass in each size fraction usually decreases rapidly below grate size. This scale of DEM model is now within the possible range of standard workstations running an efficient DEM code. This paper describes various ways of extracting collision data front the DEM model and translating it into breakage estimates. Account is taken of the different breakage mechanisms (impact and abrasion) and of the specific impact histories of the particles in order to assess the breakage rates for various size fractions in the mills. At some future time, the integration of smoothed particle hydrodynamics with DEM will allow for the inclusion of slurry within the pilot mill simulation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Modelling and optimization of the power draw of large SAG/AG mills is important due to the large power draw which modern mills require (5-10 MW). The cost of grinding is the single biggest cost within the entire process of mineral extraction. Traditionally, modelling of the mill power draw has been done using empirical models. Although these models are reliable, they cannot model mills and operating conditions which are not within the model database boundaries. Also, due to its static nature, the impact of the changing conditions within the mill on the power draw cannot be determined using such models. Despite advances in computing power, discrete element method (DEM) modelling of large mills with many thousands of particles could be a time consuming task. The speed of computation is determined principally by two parameters: number of particles involved and material properties. The computational time step is determined by the size of the smallest particle present in the model and material properties (stiffness). In the case of small particles, the computational time step will be short, whilst in the case of large particles; the computation time step will be larger. Hence, from the point of view of time required for modelling (which usually corresponds to time required for 3-4 mill revolutions), it will be advantageous that the smallest particles in the model are not unnecessarily too small. The objective of this work is to compare the net power draw of the mill whose charge is characterised by different size distributions, while preserving the constant mass of the charge and mill speed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Extensive in-situ testings has shown that blast fragmentation influences the performance of downstream processes in a mine, and as a consequence, the profit of the whole operation can be greatly improved through optimised fragmentation. Other unit operations like excavation, crushing and grinding can all be assisted by altering the blast-induced fragmentation. Experimental studies have indicated that a change in blasting practice would not only influence fragmentation but fragment strength as well. The strength of the fragments produced in a blast is clearly important to the performance of the crushing and grinding circuit as it affects the energy required to break the feed to a target product size. In order to validate the effect of blasting on fragment strength several lumps of granite were blasted, under controlled conditions, using three very different explosive products. The resulting fragments were subjected to standard comminution ore characterisation tests. Obtained comminution parameters were then used to simulate the performance of a SAG mill. Modelling results indicate that changes in post blast residual rock fragment strength significantly influences the performance of the SAG mill, producing up to a 20% increase in throughput. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In order to determine the age of adult wild dogs, we compared two methods ( that of Thomson and Rose (TR method) and that of Knowlton and Whittemore (KW method)) of measuring and calculating pulp cavity : tooth width ratios on upper and lower canine teeth from 68 mixed-sex, known-age wild dogs of 9 months to 13 years of age reared at two localities. Although significant relationships ( P = 0.0001) were found between age and pulp cavity ratios by both methods, the TR ratio calculation and measurement showed heteroscedasity in error variance whereas the KW ratios had a more stable error variance and were normally distributed. The KW method also found significant differences between pulp cavity ratios between teeth of the upper and lower jaws ( P < 0.0001) and sex ( P = 0.01) but not geographic origin ( P = 0.1). Regressions and formulae for fitted curves are presented separately for male and female wild dogs. Males show greater variability in pulp cavity decrements with age than do females, suggesting a physiological difference between the sexes. We conclude that the KW method of using pulp cavity as a proportion of tooth width, measured 15 mm from the root tip and averaged over both upper canines, is the more accurate method of estimating the age of adult wild dogs.
Resumo:
Objective To quantify the temperature changes in the dental pulp associated with equine dental procedures using power grinding equipment. Design A matrix experimental design with replication on the same sample was followed to allow the following independent variables to be assessed: horse age (young or old), tooth type (premolar or molar), powered grinding instrument (rotating disc or die grinder), grinding time (15 or 20 seconds) and the presence or absence of water coolant. Procedure Sound premolar and molar teeth from a 6-year-old horse and a 15-year-old horse, which had been removed postmortem, were sectioned parallel to the occlusal plane to allow placement of a miniature thermocouple at the level of the dental pulp. The maximum temperature increase, the time taken to reach this maximum and the cooling time were measured (n=10 in each study). The teeth were placed in a vice and the instrument used on the tooth as per clinical situation. Results Significant differences were recorded for horse age (P < 0.001), instrument type (P < 0.001), grinding time (P < 0.001) and presence or absence of coolant (P < 0.001). There was no significant difference for tooth type. Conclusion Thermal insult to the dental pulp from the use of power instruments poses a significant risk to the tooth. This risk can be reduced or eliminated by appropriate selection of treatment time and by the use of water irrigation as a coolant. The increased dentine thickness in older horses appears to mitigate against thermal injury from frictional heat.
Resumo:
A technique for determining the recovery of attached particles across the froth phase in flotation that relies on measuring the rate at which bubble-particle aggregates enter the froth is used to investigate the selectivity of attached particles across the froth phase. Combining these measurements with those of other techniques for determining the froth recovery of attached particles provides an insight into the different sub-processes of particle rejection in the froth phase. The results of experiments conducted in a 3 m(3) Outokumpu tank cell show that the detachment of particles from aggregates in the froth phase occurs largely at the pulp-froth interface. In particular it is shown that the pulp-froth interface selectively detaches particles from aggregates according to their physical attributes. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Stirred Mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. In the first part of this paper, media flow patterns and energy absorption rates and distributions were analysed to provide a good understanding of the media flow and the collisional environment in these mills. In this second part we analyse steady state coherent flow structures, liner stress and wear by impact and abrasion. We also examine mixing and transport efficiency. Together these provide a comprehensive understanding of all the key processes operating in these mills and a clear understanding of the relative performance issues. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Stirred mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. Media flow patterns and energy absorption rates and distributions are analysed here. In the second part of this paper, coherent flow structures, equipment wear and mixing and transport efficiency are analysed. (C) 2006 Published by Elsevier Ltd.
Resumo:
The patterns of rock comminution within tumbling mills, as well as the nature of forces, are of significant practical importance. Discrete element modelling (DEM) has been used to analyse the pattern of specific energy applied to rock, in terms of spatial distribution within a pilot AG/SAG mill. We also analysed in some detail the nature of the forces, which may result in rock comminution. In order to examine the distribution of energy applied within the mill, the DEM models were compared with measured particle mass losses, in small scale AG and SAG mill experiments. The intensity of contact stresses was estimated using the Hertz theory of elastic contacts. The results indicate that in the case of the AG mill, the highest intensity stresses and strains are likely to occur deep within the charge, and close to the base. This effect is probably more pronounced for large AG mills. In the SAG mill case, the impacts of the steel balls on the surface of the charge are likely to be the most potent. In both cases, the spatial pattern of medium-to-high energy collisions is affected by the rotational speed of the mill. Based on an assumed damage threshold for rock, in terms of specific energy introduced per single collision, the spatial pattern of productive collisions within each charge was estimated and compared with rates of mass loss. We also investigated the nature of the comminution process within AG vs. SAG mill, in order to explain the observed differences in energy utilisation efficiency, between two types of milling. All experiments were performed using a laboratory scale mill of 1.19 m diameter and 0.31 m length, equipped with 14 square section lifters of height 40 mm. (C) 2006 Elsevier Ltd. All rights reserved.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.
Resumo:
Morphology, occlusal surface topography, macrowear, and microwear features of parrotfish pharyngeal teeth were investigated to relate microstructural characteristics to the function of the pharyngeal mill using scanning electron microscopy of whole and sectioned pharyngeal jaws and teeth. Pharyngeal tooth migration is anterior in the lower jaw (fifth ceratobranchial) and posterior in the upper jaw (paired third pharyngobranchials), making the interaction of occlusal surfaces and wear-generating forces complex. The extent of wear can be used to define three regions through which teeth migrate: a region containing newly erupted teeth showing little or no wear; a midregion in which the apical enameloid is swiftly worn; and a region containing teeth with only basal enameloid remaining, which shows low to moderate wear. The shape of the occlusal surface alters as the teeth progress along the pharyngeal jaw, generating conditions that appear suited to the reduction of coral particles. It is likely that the interaction between these particles and algal cells during the process of the rendering of the former is responsible for the rupture of the latter, with the consequent liberation of cell contents from which parrotfish obtain their nutrients.