136 resultados para prostatic acid phosphatase


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purple acid phosphatases are metal-containing hydrolases. While their precise biological role(s) is unknown, the mammalian enzyme has been linked in a variety of biological circumstances (e.g., osteoporosis) with increased bone resorption. Inhibition of the human enzyme is a possible strategy for the treatment of bone-resorptive diseases such as osteoporosis. Previously, we determined the crystal structure of pig purple acid phosphatase to 1.55 Angstrom and we showed that it is a good model for the human enzyme. Here, a study of the pH dependence of its kinetic parameters showed that the pig enzyme is most efficient at pH values similar to those encountered in the osteoclast resorptive space. Based on the observation that phosphotyrosine-containing peptides are good substrates for pig purple acid phosphatase, peptides containing a range of phosphotyrosine mimetics were synthesized. Kinetic analysis showed that they act as potent inhibitors of mammalian and plant purple acid phosphatases, with the best inhibitors exhibiting low micromolar inhibition constants at pH 3-5. These compounds are thus the most potent organic inhibitors yet reported for the purple acid phosphatases. (C) 2004 Published by Elsevier Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) belong to the family of binuclear metallohydrolases and catalyse the hydrolysis of a large group of phosphoester substrates at acidic pH. Despite structural conservation in their active sites PAPs appear to display mechanistic versatility. Here, aspects of the catalytic mechanism of two PAPs are investigated using the inhibitors vanadate and fluoride as probes. While the magnitude of their vanadate inhibition constants are similar the two enzymes differ with respect to the mode of inhibition; vanadate interacts in a non-competitive fashion with pig PAP (K-i = 40 mu mol L-1) while it inhibits red kidney bean PAP competitively (K-i = 30 mu mol L-1). Similarly, fluoride also acts as a competitive inhibitor for red kidney bean PAP, independent of pH, while the inhibition of pig PAP by fluoride is uncompetitive at low pH and non-competitive at higher pH, independent of metal ion composition. Furthermore, while fluoride acts as a slow-binding inhibitor in pig PAP it binds rapidly to the catalytic site of the red kidney bean enzyme. Since vanadate and fluoride are proposed to act as transition state and nucleophile mimics, respectively, the observed differences in inhibition kinetics indicate subtle but distinct variations in the reaction mechanism of these enzymes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intracellular amastigotes of the protozoan parasite Leishmania mexicana secrete a macromolecular proteophosphoglycan (aPPG) into the phagolysosome of their host cell, the mammalian macrophage. The structures of aPPG glycans were analyzed by a combination of high pH anion exchange high pressure liquid chromatography, gas chromatography-mass spectrometry, enzymatic digestions, electrospray-mass spectrometry as well as H-1 and P-31 NMR spectroscopy. Some glycans are identical to oligosaccharides known from Leishmania mexicana promastigote lipophosphoglycan and secreted acid phosphatase, However, the majority of the aPPG glycans represent amastigote stage-specific and novel structures. These include neutral glycans ([Glc beta(1-3)](1-2)Gal beta 1-4Man, Gal beta 1-3Gal beta 1-4Man, Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), several monophosphorylated glycans containing the conserved phosphodisaccharide backbone (R-3-[PO4-6-Gal]beta 1-4Man) but carrying stage-specific modifications (R = Gal beta 1-, [Glc beta 1-3](1-2)Glc beta 1-), and monophosphorylated aPPG tri- and tetrasaccharides that are uniquely phosphorylated on the terminal hexose (PO4-6-Glc beta 1-3Gal beta 1-4Man, PO4-6-Glc beta 1-3Glc beta 1-3Gal beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3Gal beta 1-4Man), In addition aPPG contains highly unusual di- and triphosphorylated glycans whose major species are PO4-6-Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Gal beta 1-3Glc beta 1-3 [PO4-6-Gal]beta 1-4Man, PO4-6-GaL beta 1-3Glc beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3[PO4-6-Gal]beta 1-4Man, PO4-6Gal beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man, and PO4-6-Glc beta 1-3[PO4-6-Glc]beta 1-3Glc beta 1-3[PO4-6-Gal]beta 1-4Man. These glycans are linked together by the conserved phosphodiester R-Man alpha 1-PO4-6-Gal-R or the novel phosphodiester R-Man alpha 1-PO4-6-Glc-R and are connected to Ser(P) of the protein backbone most likely via the linkage R-Man alpha 1-PO4-Ser. The variety of stage-specific glycan structures in Leishmania mexicana aPPG suggests the presence of developmentally regulated amastigote glycosyltransferases which may be potential anti-parasite drug targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microphthalmia transcription factor (MITF), a basic-helix-loop-helix zipper factor, regulates distinct target genes in several cell types. We hypothesized that interaction with the Ets family factor PU.1, whose expression is limited to hematopoietic cells, might be necessary for activation of target genes like tartrate-resistant acid phosphatase (TRAP) in osteoclasts. Several lines of evidence were consistent with this model. The combination of MITF and PU.1 synergistically activated the TRAP promoter in transient assays. This activation was dependent on intact binding sites for both factors in the TRAP promoter. MITF and PU.1 physically interacted when coexpressed in COS cells or in vitro when purified recombinant proteins were studied. The minimal regions of MITF and PU.1 required for the interaction were the basic-helix-loop-helix zipper domain and the Ets DNA binding domain, respectively. Significantly, mice heterozygous for both the mutant mi allele and a PU.1 null allele developed osteopetrosis early in life which resolved with age. The size and number of osteoclasts were not altered in the double heterozygous mutant mice, indicating that the defect lies in mature osteoclast function. Taken in total, the results afford an example of how lineage-specific gene regulation can be achieved by the combinatorial action of two broadly expressed transcription factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The activity of the TRACP promoter has been investigated as a model of gene regulation in osteoclasts. The murine TRACP gene promoter contains potential binding sites for a number of transcription factors in particular, candidate sites for the Ets factor PU.1 and for the microphthalmia transcription factor (MiTF). These are of relevance to osteoclast biology because the PU.1 knockout mouse has an osteopetrotic phenotype, and MiTF, when mutated in the mi/mi mouse, also results in osteopetrosis. The binding sites for both of these factors have been identified, and they have been determined to be functional in regulating TRACP expression. A novel assay system using the highly osteoclastogenic RAW/C4 subclone of the murine macrophage cell line RAW264.7 was used to perform gene expression experiments on macrophage and osteoclast cell backgrounds. We have shown that TRACP expression is a target for regulation by the macrophage/osteoclast transcription factor PU.1 and the osteoclast commitment factor MiTF and that these factors act synergistically in regulating this promoter. This directly links two controlling factors of osteoclast differentiation to the expression of an effector of cell function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To study the physiological control of osteoclasts, the bone resorbing cells, we generated transgenic mice carrying the Cre recombinase gene driven by either the tartrate-resistant acid phosphatase (TRAP) or cathepsin K (Ctsk) promoters. TRAP-Cre and Ctsk-Cre transgenic mouse lines were characterized by breeding with LacZ ROSA 26 (R26R) reporter mice and immunohistochemistry for Cre recombinase. The Cre transgene was functional in all lines, with Cre-mediated recombination occurring primarily in the long bones, vertebrae, ribs, and calvaria. Histological analyses of the bones demonstrated that functional Cre protein was present in 1) osteoclasts (Ctsk-Cre); 2) osteoclasts, columnar proliferating, and hypertrophic chondrocytes (TRAP-Cre line 4); and 3) round proliferating chondrocytes (TRAP-Cre line 3). In conclusion, we generated transgenic mouse lines that will enable the deletion of floxed target genes in osteoclasts, which will be valuable tools for studying the regulation of osteoclast function. (C) 2004 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial phosphotriesterases are binuclear metalloproteins for which the catalytic mechanism has been studied with a variety of techniques, principally using active sites reconstituted in vitro from apoenzymes. Here, atomic absorption spectroscopy and anomalous X-ray scattering have been used to determine the identity of the metals incorporated into the active site in vivo. We have recombinantly expressed the phosphotriesterase from Agrobacterium radiobacter (OpdA) in Escherichia coli grown in medium supplemented with 1 mM CoCl2 and in unsupplemented medium. Anomalous scattering data, collected from a single crystal at the Fe-K, Co-K and Zn-K edges, indicate that iron and cobalt are the primary constituents of the two metal-binding sites in the catalytic centre (alpha and P) in the protein expressed in E. coli grown in supplemented medium. Comparison with OpdA expressed in unsupplemented medium demonstrates that the cobalt present in the supplemented medium replaced zinc at the beta-position of the active site, which results in an increase in the catalytic efficiency of the enzyme. These results suggest an essential role for iron in the catalytic mechanism of bacterial phosphotriesterases, and that these phosphotriesterases are natively heterobinuclear iron-zinc enzymes.