21 resultados para power of Commercial and Consumer Tribunal to award costs against non-party
Resumo:
The power of individualist and collectivist group norms to influence intergroup and inter-individual differentiation was examined in three studies. Study I revealed that intergroup differentiation was lower when group norms prescribed individualism than when they prescribed collectivism. However inter-individual differentiation was higher when group norms endorsed individualism than when they promoted collectivism. In Studies 2 and 3 we found evidence for the moderating effect of group salience on the relationship between norms and differentiation. Specifically, the effect that individualist group norms reduced intergroup differentiation but enhanced inter-individual differentiation was more pronounced when group salience was high rather than low. This finding demonstrates that conformity to a group norm prescribing individualism influences the manner in which positive differentiation is expressed. The discussion focuses on the caveats of introducing individualist group norms when attempting to reduce intergroup differentiation. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The net effect of sexual selection on nonsexual fitness is controversial. On one side, elaborate display traits and preferences for them can be costly, reducing the nonsexual fitness of individuals possessing them, as well as their offspring, In contrast, sexual selection may reinforce nonsexual fitness if an individual's attractiveness and quality are genetically correlated. According to recent models, such good-genes mate choice should increase both the extent and rate of adaptation. We evolved 12 replicate populations of Drosophila serrata in a powerful two-way factorial experimental design to test the separate and combined contributions of natural and sexual selection to adaptation to a novel larval food resource. Populations evolving in the presence of natural selection had significantly higher mean nonsexual fitness when measured over three generations (13-15) during the course of experimental evolution (16-23% increase). The effect of natural selection was even more substantial when measured in a standardized, monogamous mating environment at the end of the experiment (generation 16; 52% increase). In contrast, and despite strong sexual selection on display traits, there was no evidence from any of the four replicate fitness measures that sexual selection promoted adaptation. In addition, a comparison of fitness measures conducted under different mating environments demonstrated a significant direct cost of sexual selection to females, likely arising from some form of male-induced harm. Indirect benefits of sexual selection in promoting adaptation to this novel resource environment therefore appear to be absent in this species, despite prior evidence suggesting the operation of good-genes mate choice in their ancestral environment. How novel environments affect the operation of good-genes mate choice is a fundamental question for future sexual selection research.
Resumo:
Background Estimates of the disease burden due to multiple risk factors can show the potential gain from combined preventive measures. But few such investigations have been attempted, and none on a global scale. Our aim was to estimate the potential health benefits from removal of multiple major risk factors. Methods We assessed the burden of disease and injury attributable to the joint effects of 20 selected leading risk factors in 14 epidemiological subregions of the world. We estimated population attributable fractions, defined as the proportional reduction in disease or mortality that would occur if exposure to a risk factor were reduced to an alternative level, from data for risk factor prevalence and hazard size. For every disease, we estimated joint population attributable fractions, for multiple risk factors, by age and sex, from the direct contributions of individual risk factors. To obtain the direct hazards, we reviewed publications and re-analysed cohort data to account for that part of hazard that is mediated through other risks. Results Globally, an estimated 47% of premature deaths and 39% of total disease burden in 2000 resulted from the joint effects of the risk factors considered. These risks caused a substantial proportion of important diseases, including diarrhoea (92%-94%), lower respiratory infections (55-62%), lung cancer (72%), chronic obstructive pulmonary disease (60%), ischaemic heart disease (83-89%), and stroke (70-76%). Removal of these risks would have increased global healthy life expectancy by 9.3 years (17%) ranging from 4.4 years (6%) in the developed countries of the western Pacific to 16.1 years (43%) in parts of sub-Saharan Africa. Interpretation Removal of major risk factors would not only increase healthy life expectancy in every region, but also reduce some of the differences between regions, The potential for disease prevention and health gain from tackling major known risks simultaneously would be substantial.
Resumo:
The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-alpha/beta) and gamma IFN (IFN-gamma) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-alpha. IFN-alpha signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins. responsible for this inhibition.
Resumo:
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.
Resumo:
We describe an extension of the theory of Owicki and Gries (1976) to a programming language that supports asynchronous message passing based on unconditional send actions and conditional receive actions. The focus is on exploring the fitness of the extension for distributed program derivation. A number of experiments are reported, based on a running example problem, and with the aim of exploring design heuristics and of streamlining derivations and progress arguments.