17 resultados para paralysis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

These guidelines have been prepared to assist in the planning, conduct and interpretation of studies for the assessment of the efficacy of acaricides (excluding vaccines and other bio-control agents) against single and multi-host ticks (Ixodidae) on ruminants. Information is provided on the selection of animals, dose determination, dose confirmation and field studies, record keeping and result interpretation. The use of pen facilities is advocated for dose determination and confirmation studies for defining therapeutic and persistent efficacy. A minimum of two studies per tick species for which claims are sought is recommended for each dose determination and dose confirmation investigation. If dose confirmation studies demonstrate greater than 95% efficacy the sponsor may proceed to field studies, where a minimum of two studies per geographical location is preferred to confirm the therapeutic and persistent efficacy under field conditions. If dose confirmation studies demonstrate less than 95% efficacy then longer-term field studies can be conducted over two tick seasons with a minimum of two studies per geographical location. These studies can incorporate other control methods such as tick vaccines, to demonstrate stable long-term tick management. Specific advice is also given on conducting studies with paralysis ticks. These guidelines are also intended to assist investigators on how to conduct specific experiments, to provide specific information for registration authorities involved in the decision-making process, to assist in the approval and registration of new acaricides, and to facilitate the worldwide adoption of standard procedures. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.