37 resultados para optical constants measurements


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous quadrature phase amplitude (position and momentum) measurements. For any quantum state, this contradiction is lost for situations where the quadrature phase amplitude results are always macroscopically distinct. We show that for optical realizations of this experiment, where one uses homodyne detection techniques to perform the quadrature phase amplitude measurement, one has an amplification prior to detection, so that macroscopic fields are incident on photodiode detectors. The high efficiencies of such detectors may open a way for a loophole-free test of local hidden variable theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent detections of high-redshift absorption by both atomic hydrogen and molecular gas in the radio spectra of quasars have provided a powerful tool for measuring possible temporal and spatial variations of physical 'constants' in the Universe. We compare the frequency of high-redshift hydrogen 21-cm absorption with that of associated molecular absorption in two quasars to place new (1 sigma) upper limits on any variation in y = g(p) alpha(2) (where alpha is the fine-structure constant, and g(p) is the proton g-factor) of \Delta y/y\ < 5 x 10(-6) at redshifts z = 0.25 and 0.68. These quasars are separated by a comoving distance of 3000 Mpc (for H-0=75 km s(-1) Mpc(-1) and q(0) = 0). We also derive limits on the time rates of change of \(g) over dot (p)/(g) over dot (p)\ < 1 x 10(-15) yr(-1) and \(alpha) over dot/(a) over dot\ < 5 x 10(-16) yr(-1) between the present epoch and z = 0.68, These limits are more than an order of magnitude smaller than previous results derived from highredshift measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-piston-driven expansion tubes are capable of generating flaw conditions over a wide range of enthalpies ranging from orbital up to superorbital velocities. Initial optical measurements aimed at investigating the flow in such a facility are presented. Emission studies were used to identify impurities in the how and to investigate spectral regions that are accessible by optical techniques. At moderate enthalpies, it was found that significant radiation resulted from metallic contaminants. At high enthalpies, the spectrum consisted of a number of atomic lines together with a broadband background component indicative of the presence of electrons. The presence of this radiation may limit the applicability of optical techniques that require spectral regions free from the influence of atomic transitions or background radiation. Emission spectroscopy (through Stark broadened hydrogen lines) and two-wavelength holographic interferometry were used to measure the electron number density behind a bow shock on a blunt body at conditions where significant ionization was observed. They yielded average concentrations of (3 +/- 1) x 10(17) cm(-3) from the emission measurements and (3.8 +/- 0.6) x 10(17) cm(-3) from the interferometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate a nondestructive measurement technique to monitor Josephson-like oscillations between two spatially separated neutral atom Bose-Einstein condensates. One condensate is placed in an optical cavity, which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne detection scheme. The cavity field is well detuned from an atomic resonance, and experiences a dispersive phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the coherent tunneling oscillations of the condensate. Even when there is an equal number of atoms in each well initially, a phase is established by the measurement process and Josephson-like oscillations develop due to measurement backaction noise alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1-4-mu m-diameter polystyrene spheres in a single-beam gradient trap using measurements of back-scattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10(-6) and 4 x 10(-6) N/m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction. (C) 1996 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, such as in high Q cavities, is treated using a quasimode description, and the pseudo mode theory for single quantum reservoir excitations is obtained via Fano diagonalisation. The atomic transitions are coupled to a discrete set of (cavity) quasimodes, which are also coupled to a continuum set of (external) quasimodes with slowly varying coupling constants. Each pseudomode corresponds to a cavity quasimode, and the original reservoir structure is obtained in expressions for the equivalent atom-true mode coupling constants. Cases of multiple excitation of the reservoir are now treatable via Markovian master equations for the atom-discrete quasimode system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is not possible to make measurements of the phase of an optical mode using linear optics without introducing an extra phase uncertainty. This extra phase variance is quite large for heterodyne measurements, however it is possible to reduce it to the theoretical limit of log (n) over bar (4 (n) over bar (2)) using adaptive measurements. These measurements are quite sensitive to experimental inaccuracies, especially time delays and inefficient detectors. Here it is shown that the minimum introduced phase variance when there is a time delay of tau is tau/(8 (n) over bar). This result is verified numerically, showing that the phase variance introduced approaches this limit for most of the adaptive schemes using the best final phase estimate. The main exception is the adaptive mark II scheme with simplified feedback, which is extremely sensitive to time delays. The extra phase variance due to time delays is considered for the mark I case with simplified feedback, verifying the tau /2 result obtained by Wiseman and Killip both by a more rigorous analytic technique and numerically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that quantum computation circuits using coherent states as the logical qubits can be constructed from simple linear networks, conditional photon measurements, and "small" coherent superposition resource states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-insulating InP was implanted with MeV P, As, Ga, and In ions, and the resulting evolution of structural properties with increased annealing temperature was analyzed using double crystal x-ray diffractometry and cross sectional transmission electron microscopy. The types of damage identified are correlated with scanning spreading resistance and scanning capacitance measurements, as well as with previously measured Hall effect and time resolved photoluminescence results. We have identified multiple layers of conductivity in the samples which occur due to the nonuniform damage profile of a single implant. Our structural studies have shown that the amount and type of damage caused by implantation does not scale with implant ion atomic mass. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical metallographic techniques for grain-size measurement give unreliable results for high pressure diecast Mg-Al alloys and electron back-scattered diffraction mapping (EBSD) provides a good tool for improving the quality of these measurements. An application of EBSD mapping to this question is described, and data for some castings are presented. Ion-beam milling was needed to prepare suitable samples, and this technique is detailed. As is well-known for high pressure die castings, the grain size distribution comprises at least two populations. The mean grain size of the fine-grained population was similar in both AZ91 and AM60 and in two casting thicknesses (2 mm and 5 mm) and, contrary to previously published reports, it did not vary with depth below the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of near-resonant holographic interferometry techniques for use on flows seeded with atomic species is described. A theoretical model for the refractivity that is due to the seed species is outlined, and an approximation to this model is also described that is shown to be valid for practical regimes of interest and allows the number density of the species to be determined without knowledge of line-broadening effects. The details of quantitative number density experiments performed on an air-acetylene flame are given, and a comparison with an alternative absorption-based experiment is made. (C) 2004 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near-resonant holographic interferometry is demonstrated to measure temperature and species concentration in a two-dimensional steady premixed air-acetylene flame. A peak temperature of (2600 +/- 100) K and a peak OH number density of (9.6 +/- 0.3) X 10(22) m(-3) are obtained, consistent with the expected values for such a flame. These values are determined by recording interferograms with a laser assumed sufficiently detuned from line center so that pressure and temperature broadening can be ignored. The results are thus obtained without making prior assumptions on the temperature or pressure of the flame beyond the existence of thermal equilibrium. (C) 2004 Optical Society of America.