102 resultados para nonlinear model
Resumo:
We show that an Anderson Hamiltonian describing a quantum dot connected to multiple leads is integrable. A general expression for the nonlinear conductance is obtained by combining the Bethe ansatz exact solution with Landauer-Buttiker theory. In the Kondo regime, a closed form expression is given for the matrix conductance at zero temperature and when all the leads are close to the symmetric point. A bias-induced splitting of the Kondo resonance is possible for three or more leads. Specifically, for N leads, with each at a different chemical potential, there can be N-1 Kondo peaks in the conductance.
Resumo:
Use of nonlinear parameter estimation techniques is now commonplace in ground water model calibration. However, there is still ample room for further development of these techniques in order to enable them to extract more information from calibration datasets, to more thoroughly explore the uncertainty associated with model predictions, and to make them easier to implement in various modeling contexts. This paper describes the use of pilot points as a methodology for spatial hydraulic property characterization. When used in conjunction with nonlinear parameter estimation software that incorporates advanced regularization functionality (such as PEST), use of pilot points can add a great deal of flexibility to the calibration process at the same time as it makes this process easier to implement. Pilot points can be used either as a substitute for zones of piecewise parameter uniformity, or in conjunction with such zones. In either case, they allow the disposition of areas of high and low hydraulic property value to be inferred through the calibration process, without the need for the modeler to guess the geometry of such areas prior to estimating the parameters that pertain to them. Pilot points and regularization can also be used as an adjunct to geostatistically based stochastic parameterization methods. Using the techniques described herein, a series of hydraulic property fields can be generated, all of which recognize the stochastic characterization of an area at the same time that they satisfy the constraints imposed on hydraulic property values by the need to ensure that model outputs match field measurements. Model predictions can then be made using all of these fields as a mechanism for exploring predictive uncertainty.
Resumo:
We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.
Resumo:
A hydrogel intervertebral disc (lVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n = 4) on different samples (N = 2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological lVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs. (C) 2005 Springer Science + Business Media, Inc.
Resumo:
Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.
Resumo:
The interaction of electromagnetic radiation with plasmas is studied in relativistic four-vector formalism. A gauge and Lorentz invariant ponderomotive four-force is derived from the time dependent nonlinear three-force of Hora (1985). This four-force, due to its Lorentz invariance, contains new magnetic field terms. A new gauge and Lorentz invariant model of the response of plasma to electromagnetic radiation is then devised. An expression for the dispersion relation is obtained from this model. It is then proved that the magnetic permeability of plasma is unity for a general reference frame. This is an important result since it has been previously assumed in many plasma models.
Resumo:
To foster ongoing international cooperation beyond ACES (APEC Cooperation for Earthquake Simulation) on the simulation of solid earth phenomena, agreement was reached to work towards establishment of a frontier international research institute for simulating the solid earth: iSERVO = International Solid Earth Research Virtual Observatory institute (http://www.iservo.edu.au). This paper outlines a key Australian contribution towards the iSERVO institute seed project, this is the construction of: (1) a typical intraplate fault system model using practical fault system data of South Australia (i.e., SA interacting fault model), which includes data management and editing, geometrical modeling and mesh generation; and (2) a finite-element based software tool, which is built on our long-term and ongoing effort to develop the R-minimum strategy based finite-element computational algorithm and software tool for modelling three-dimensional nonlinear frictional contact behavior between multiple deformable bodies with the arbitrarily-shaped contact element strategy. A numerical simulation of the SA fault system is carried out using this software tool to demonstrate its capability and our efforts towards seeding the iSERVO Institute.
Resumo:
The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity-Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick-slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics. (C) 1999 Academic Press.
Resumo:
The University of Queensland, Australia has developed Fez, a world-leading user-interface and management system for Fedora-based institutional repositories, which bridges the gap between a repository and users. Christiaan Kortekaas, Andrew Bennett and Keith Webster will review this open source software that gives institutions the power to create a comprehensive repository solution without the hassle..
Resumo:
We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.
Resumo:
The classical model of surface layering followed by capillary condensation during adsorption in mesopores, is modified here by consideration of the adsorbate solid interaction potential. The new theory accurately predicts the capillary coexistence curve as well as pore criticality, matching that predicted by density functional theory. The model also satisfactorily predicts the isotherm for nitrogen adsorption at 77.4 K on MCM-41 material of various pore sizes, synthesized and characterized in our laboratory, including the multilayer region, using only data on the variation of condensation pressures with pore diameter. The results indicate a minimum mesopore diameter for the surface layering model to hold as 14.1 Å, below which size micropore filling must occur, and a minimum pore diameter for mechanical stability of the hemispherical meniscus during desorption as 34.2 Å. For pores in-between these two sizes reversible condensation is predicted to occur, in accord with the experimental data for nitrogen adsorption on MCM-41 at 77.4 K.
Resumo:
The detection of seizure in the newborn is a critical aspect of neurological research. Current automatic detection techniques are difficult to assess due to the problems associated with acquiring and labelling newborn electroencephalogram (EEG) data. A realistic model for newborn EEG would allow confident development, assessment and comparison of these detection techniques. This paper presents a model for newborn EEG that accounts for its self-similar and non-stationary nature. The model consists of background and seizure sub-models. The newborn EEG background model is based on the short-time power spectrum with a time-varying power law. The relationship between the fractal dimension and the power law of a power spectrum is utilized for accurate estimation of the short-time power law exponent. The newborn EEG seizure model is based on a well-known time-frequency signal model. This model addresses all significant time-frequency characteristics of newborn EEG seizure which include; multiple components or harmonics, piecewise linear instantaneous frequency laws and harmonic amplitude modulation. Estimates of the parameters of both models are shown to be random and are modelled using the data from a total of 500 background epochs and 204 seizure epochs. The newborn EEG background and seizure models are validated against real newborn EEG data using the correlation coefficient. The results show that the output of the proposed models has a higher correlation with real newborn EEG than currently accepted models (a 10% and 38% improvement for background and seizure models, respectively).
Resumo:
View of model for competition entry.
Resumo:
View of model for competition entry.
Resumo:
View of model for competition entry.