29 resultados para monounsaturated fatty acid
Resumo:
Background: The long-term relations between specific types of dietary fat and risk of type 2 diabetes remain unclear. Objective: Our objective was to examine the relations between dietary fat intakes and the risk of type 2 diabetes. Design: We prospectively followed 84204 women aged 34–59 y with no diabetes, cardiovascular disease, or cancer in 1980. Detailed dietary information was assessed at baseline and updated in 1984, 1986, and 1990 by using validated questionnaires. Relative risks of type 2 diabetes were obtained from pooled logistic models adjusted for nondietary and dietary covariates. Results: During 14 y of follow-up, 2507 incident cases of type 2 diabetes were documented. Total fat intake, compared with equivalent energy intake from carbohydrates, was not associated with risk of type 2 diabetes; for a 5% increase in total energy from fat, the relative risk (RR) was 0.98 (95% CI: 0.94, 1.02). Intakes of saturated or monounsaturated fatty acids were also not significantly associated with the risk of diabetes. However, for a 5% increase in energy from polyunsaturated fat, the RR was 0.63 (0.53, 0.76; P < 0.0001) and for a 2% increase in energy from trans fatty acids the RR was 1.39 (1.15, 1.67; P = 0.0006). We estimated that replacing 2% of energy from trans fatty acids isoenergetically with polyunsaturated fat would lead to a 40% lower risk (RR: 0.60; 95% CI: 0.48, 0.75). Conclusions: These data suggest that total fat and saturated and monounsaturated fatty acid intakes are not associated with risk of type 2 diabetes in women, but that trans fatty acids increase and polyunsaturated fatty acids reduce risk. Substituting nonhydrogenated polyunsaturated fatty acids for trans fatty acids would likely reduce the risk of type 2 diabetes substantially.
Resumo:
The novel fatty acids 17-methyl-6(Z)-octadecenoic acid and 17-methyl-7(Z)-octadecenoic acid were identified for the first time in nature in the mollusk Siphonaria denticulata from Queensland, Australia. The principal fatty acids in the limpet were hexadecanoic acid, octadecanoic acid, and (Z)-9-octadecenoic acid, while the most interesting series of monounsaturated fatty acids was a family of five nonadecenoic acids with double bonds at either Delta (7), Delta (9), Delta (11), Delta (12), or Delta (13). The novel compounds were characterized using a combination of GC-MS and chemical transformations, such as dimethyl disulfide derivatization. The first total syntheses for the two novel methyl-branched nonadecenoic acids are also described, and these were accomplished in four to five steps and in high yields.
Resumo:
Hydroperoxide derivatives of beta-oxa-substituted polyunsaturated fatty acids were prepared by 15-lipoxygenase catalysed oxidation and perketal derivatives of fatty acid hydroperoxides were synthesized. The perketals are more stable than their parent fatty acid hydroperoxides, but less active as antimalarial agents in the in vitro growth inhibition of Plasmodium falciparum. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Eight thia fatty acids and other sulfides have been studied as inhibitors of autoxidation of arachidonic acid. The inhibitors extend the lag phase of the oxidation, to varying degrees. A carboxyl group in the vicinity of the sulfur reduces the antioxidant activity, while unsaturated sulfides are more effective than their saturated analogues. The results are consistent with the sulfides acting to reduce fatty acid hydroperoxides, which otherwise accumulate during the early stages of reaction and propagate the free-radical oxidation process.
Resumo:
Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
Background Peroxisome proliferator activated receptor gamma (PPARgamma) is a ligand-activated transcription factor known to be central to both adipose tissue development and insulin action. Growth of adipose tissue requires differentiation of preadipocytes with acquisition of specific cellular functions including insulin sensitivity, leptin secretion and the capacity to store triglyceride. Dietary fatty acids and members of the thiazolidinedione class of compounds have been reported to influence adipogenesis at the transcriptional level. Here, we compare the effects of a dietary fatty acid, linoleic acid, and a thiazolidinedione, rosiglitazone, on biochemical and functional aspects of human preadipocyte differentiation in vitro . Materials and methods Human omental and subcutaneous preadipocytes were subcultured 2-3 times and subsequently differentiated for 21 days in the presence of either linoleic acid or rosiglitazone. Differentiation was assessed using a number of biochemical and functional parameters. Results Omental and subcutaneous preadipocytes differentiated in the presence of linoleic acid showed marked cytoplasmic triacylglycerol accumulation however, no biochemical markers of differentiation (LPL expression, G3PDH gene expression and enzyme activity and leptin expression or secretion) were detected. In contrast, treatment of these cells with rosiglitazone induced full biochemical differentiation as judged by all markers assessed, despite comparatively little lipid accumulation. The rosiglitazone effects were subcutaneous depot-specific. Cells treated with linoleic acid showed decreased glucose uptake cf rosiglitazone-treated cells. A luciferase reporter assay demonstrated that rosiglitazone potently activates h-peroxisome proliferator activated receptor gamma while linoleic acid had no effect. Conclusions These studies demonstrate that (a) human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation; (b) while omental preadipocytes are refractory to biochemical differentiation in vitro , they are able to accumulate triacylglycerol; and (c) rosiglitazone and linoleic acid may exert their effects via different biochemical pathways.
Resumo:
This investigation aimed to elucidate the relative roles of putative brevetoxins, reactive oxygen species and free fatty acids as the toxic principle of the raphidophyte Chattonella marina, using damselfish as the bioassay. Our investigations on Australian C. marina demonstrated an absence or only very low concentrations of brevetoxin-like compounds by radio-receptor binding assay and liquid chromatography-mass spectroscopy techniques. Chattonella is unique in its ability to produce levels of reactive oxygen species 100 times higher than most other algal species. However, high levels of superoxide on their own were found not to cause fish mortalities. Lipid analysis revealed this raphidophyte to contain high concentrations of the polyunsaturated fatty acid eicosapentaenoic acid (EPA; 18-23% of fatty acids), which has demonstrated toxic properties to marine organisms. Using damselfish as a model organism, we demonstrated that the free fatty acid (FFA) form of EPA produced a mortality and fish behavioural response similar to fish exposed to C. marina cells. This effect was not apparent when fish were exposed to other lipid fractions including a triglyceride containing fish oil, docosahexaenoate-enriched ethyl ester, or pure brevetoxin standards. The presence of superoxide together with low concentrations of EPA accelerated fish mortality rate threefold. We conclude that the enhancement of ichthyotoxicity of EPA in the presence of superoxide can account for the high C. marina fish killing potential. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
[GRAPHICS] Oxidation of tetradecanoic and hexadecanoic acids by cytochrome P450(Biol) (CYP107H1) produces mainly the 11-, 12-, and 13-hydroxy C-14 fatty acids and the 11- to 15-hydroxy C-16 fatty acids, respectively. In contrast to previous reports, terminal hydroxylation is not observed. The enantiospecificity of fatty acid hydroxylation by P450(Biol) was also determined, and the enzyme was shown to be moderately selective for production of the (R)-alcohols.
Resumo:
Fatty acids (FAs) are relatively small, hydrophobic and highly mobile molecular structures with vital biological functions and a ubiquitous distribution. Surprisingly, however, they can be rendered immunogenic. We have synthesised a novel immunogen in which dicarboxylic linoleic acid was conjugated to a carrier protein. Dicarboxylic fatty acids (DCA) differ from their normal counterparts only by their possession of a carboxyl group at each end of the molecule. When conjugated to proteins as haptens, they are, therefore, presented to the immune system with a free carboxyl group at the distal end, instead of a methyl group. Polyclonal IgG antibodies raised in response to this unique immunogen could bind not only conjugated hapten with high affinity, but also the equivalent free FA in mono and dicarboxylic form. Similar conjugates constructed from normal FAs produced much weaker antibody responses and could scarcely be considered antigenic at all. The cross-reactivities of the anti-DCA antibodies with FA variants differing in the number, position and configuration of their double bonds showed that the antibody paratope (binding site) was structured to accommodate the hapten in a way that depended on the precise shape of the acyl chain. We suggest that FAs become much more effective as B-cell epitopes when presented with their hydrophilic carboxyl group exposed on the surface of immunogenic conjugates. This type of epitope is determined by the particular double bond pattern of the unsaturated acyl chain, as well as the polar head group. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Background There is evidence for an adaptive role of the omega -3 fatty acid, docosahexaenoic acid (DHA) during stress. Mechanisms of action may involve regulation of stress mediators, such as the catecholamines and proinflammatory cytokines. Prevention of stress-induced aggression and hostility were demonstrated in a series of clinical trials. This study investigates whether perceived stress is ameliorated by DHA in stressed university staff. Methods Subjects that scored ≥ 17 on the Perceived Stress Scale were randomised into a 6-week pilot intervention study. The diet reactive group was supplemented with 6 g of fish oil containing 1.5 g per day DHA, while the placebo group was supplemented with 6 g a day of olive oil. The groups were compared with each other and a wider cross sectional study population that did not receive either active or placebo intervention. Results There was a significant reduction in perceived stress in both the fish oil and the placebo group from baseline. There was also a significant between-group difference between the fish oil group and the no-treatment controls in the rate of stress reduction (p < 0.05). However, there was not a significant between-group difference between the fish oil and the placebo group, nor the placebo group and the control group. These results are discussed in the context of several methodological limitations. The significant stress reductions in both the fish oil and the placebo group are considered in view of statistical regression, an effect likely to have been exaggerated by the time course of the study, a large placebo effect and the possibility of an active effect from the placebo. Conclusion There were significant differences (p < 0.05) in the fish oil group compared with no-treatment controls. This effect was not demonstrated in the placebo group. As a pilot study, it was not sufficiently powered to find the difference between the fish oil group and the placebo group significant. Further work needs to be undertaken to conclusively demonstrate these data trends. However, the findings from this research support the literature in finding a protective or 'adaptogenic' role for omega-3 fatty acids in stress.
Resumo:
The mechanism of aliphatic hydroxylation by cytochromes P450 has been the subject of intense debate with several proposed mechanistic alternatives. Various cyclopropyl containing compounds (radical clocks), which can produce both unrearranged and ring opened products upon oxidation, have been key tools in these investigations. In this study, we introduce several cyclopropyl containing fatty acids 1a-4a with which to probe the mechanism of P450s capable of fatty acid hydroxylation. The probes are shown to be capable of distinguishing radical from cationic intermediates due to the rapid equilibration of isomeric cyclopropyl cations. Ring opening of a radical intermediate in an oxidative transformation is expected to yield a single rearranged alcohol, whereas a cation isomerizes prior to ring opening, leading to two isomeric homoallylic alcohols. Oxidation of these probes by P450(BM3) and P450(Biol) gives results consistent with a radical but not a cationic intermediate in fatty acid hydroxylation by these enzymes. Quantitation of the unrearranged and ring opened products gives remarkably homogeneous rates for oxygen rebound of (2-3) x 10(10) s(-1). The effects of introduction of a cyclopropane ring into a fatty acid upon the regiochemistry of hydroxylation are discussed.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.