74 resultados para medicinal plants toxicity
Resumo:
Bracken fern (Pteridium spp.) produces cancer of the urinary bladder and oesophagus in grazing animals and is a suspected human carcinogen, The carcinogenic principle ptaquiloside (PT), when activated to a dienone (APT), forms DNA adducts which eventually leads to tumor. Two groups of female Sprague-Dawley rats were given a chronic dose of 3 mg APT weekly for 10 weeks either by intravenous (iv) tail vein or by intragastric (ig) route, A third group was given a weekly dose of 6 mg of APT for 3 weeks by the ig route corresponding to acute dosing. Both chronic iv and ig dosed animals showed ischemic tubular necrosis in the kidney but only iv dosed animals developed adenocarcinomas of the mammary glands. Acutely dosed ig animals produced apoptotic bodies in the liver, necrosis of blood cell precursors in the bone marrow and ischemic tubular necrosis in the kidney but they did not develop tumors, No mutations were found in the H-ras and p53 genes in the mammary glands of either the ig rats or the tumor-bearing iv rats. However, the mammary glands of a fourth group of rats, which received APT by iv and killed before tumor development, carried Pu to Pu and Pu to Py double mutations in codons 58 and 59 of H-ras. This study indicates that the route of administration plays a role in the nature of the disease expression from ptaquiloside exposure. In addition to confirming the role of APT in the PT-induced carcinogenesis our finding suggests that activation of H-ras is an early event in the PT-carcinogenesis model. (C) 1998 Academic Press.
Resumo:
A 1369 bp DNA fragment (Sc) was isolated from a full-length clone of sugarcane bacilliform badnavirus (ScBV) and was shown to have promoter activity in transient expression assays using monocot (banana, maize, millet and sorghum) and dicot plant species (tobacco, sunflower, canola and Nicotiana benthamiana). This promoter was also tested for stable expression in transgenic banana and tobacco plants. These experiments showed that this promoter could drive high-level expression of the beta-glucuronidase (GUS) reporter gene in most plant cells. The expression level was comparable to the maize ubiquitin promoter in standardised transient assays in maize. In transgenic banana plants the expression levels were variable for different transgenic lines but was generally comparable with the activities of both the maize ubiquitin promoter and the enhanced cauliflower mosaic virus (CaMV) 35S promoter. The Sc promoter appears to express in a near-constitutive manner in transgenic banana and tobacco plants. The promoter from sugarcane bacilliform virus represents a useful tool for the high-level expression of foreign genes in both monocot and dicot transgenic plants that could be used similarly to the CaMV 35S or maize polyubiquitin promoter.
Resumo:
Regression analyses of a long series of light-trap catches at Narrabri, Australia, were used to describe the seasonal dynamics of Helicoverpa armigera (Hubner). The size of the second generation was significantly related to the size of the first generation, to winter rainfall, which had a positive effect, and to spring rainfall which had a negative effect. These variables accounted for up to 96% of the variation in size of the second generation from year to year. Rainfall and crop hosts were also important for the size of the third generation. The area and tonnage of many potential host crops were significantly correlated with winter rain. When winter rain was omitted from the analysis, the sizes of both the second and third generations could be expressed as a function of the size of the previous generation and of the areas planted to lucerne, sorghum and maize. Lucerne and maize always had positive coefficients and sorghum a negative one. We extended our analysis to catches of H. punctigera (Wallengren), which declines in abundance after the second generation. Winter rain had a positive effect on the sizes of the second and third generations, and rain in spring or early summer had a negative effect. Only the area grown to lucerne had a positive effect on abundance. Forecasts of pest levels from a few months to a few weeks in advance are discussed, along with the improved understanding of the seasonal dynamics of both species and the significance of crops in the management of insecticide resistance for H. armigera.
Resumo:
The Green Fluorescent Protein (GFP) from Aequorea victor-in has begun to be used as a reporter protein in plants. It is particularly useful as GFP fluorescence can be detected in a non-destructive manner, whereas detection of enzyme-based reporters often requires destruction of the plant tissue. The use of GFP as a reporter enables transgenic plant tissues to be screened in vivo at any growth stage. Quantification of GFP in transgenic plant extracts will increase the utility of GFP as a reporter protein. We report herein the quantification of a mGFP5-ER Variant in tobacco leaf extracts by UV excitation and a sGFP(S65T) variant in sugarcane leaf and callus extracts by blue light excitation using the BioRad VersaFluor(TM) Fluorometer System or the Labsystems Fluoroskan Ascent FL equipped with a narrow band emission filter (510 +/- 5 nm). The GFP concentration in transgenic plant extracts was determined from a GFP-standard series prepared in untransformed plant extract with concentrations ranging from 0.1 to 4 mu g/ml of purified rGFP. Levels of sgfp(S65T) expression, driven by the maize ubiquitin promoter, in sugarcane calli and leaves ranged up to 0.525 mu g and 2.11 mu g sGFP(S65T) per mg of extractable protein respectively. In tobacco leaves the expression of mgfPS-ER, driven by the cauliflower mosaic virus (CaMV) 35S promoter, ranged up to 7.05 mu g mGFP5-ER per mg extractable protein.
Resumo:
In this paper, a new v-metric based approach is proposed to design decentralized controllers for multi-unit nonlinear plants that admit a set of plant decompositions in an operating space. Similar to the gap metric approach in literature, it is shown that the operating space can also be divided into several subregions based on a v-metric indicator, and each of the subregions admits the same controller structure. A comparative case study is presented to display the advantages of proposed approach over the gap metric approach. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Field trials on upland cotton (Gossypium hirstum L.) during its reproductive phase were used to assess the toxicity of several biorational pesticides and chemicals to Helicoverpa armigera (Hubner) and H. puntigera Wallengren, as well as major predators at Dalby, Queensland, Australia. Moderate rate-dependent control was obtained in plots treated with neem (Azadirachta indica A. Juss) seed extract-azadirachtin (Aza) at rates of 30, 60 and 90 g/ha. Plots treated with Talstar EC (bifenthrin) applications achieved the best results, followed by treatment with alternation of chemicals (methomyl, bifenthrin, thiodicarb and endosulfan) and biorational insecticides (neem oil, azadirachtin and Bacillus thuringiensis kurstaki var. Berliner). Predators, including lady beetles, lacewings, spiders and predatory bugs, were insensitive to Aza, tooseendanin (Tsdn) and BT applications. In contrast, chemicals were very destructive of predators. All treatments provided some protection from infestation of H. armigera and H. puntigera. The effect of Aza on Helicoverpa spp. was reflected in a relatively higher yield of seed cotton harvested from Aza-treated plots compared with the control, but chemical control achieved significantly higher yields than any other treatment.
Resumo:
L-studio/cpfg is a plant modeling software system designed for Windows 95/98/NT platforms. Its key components are the L-system-based plant simulator cpfg and the modeling environment called L-studio. We overview version 1.0 of this system from the user's perspective.
Resumo:
Sum: Plant biologists in fields of ecology, evolution, genetics and breeding frequently use multivariate methods. This paper illustrates Principal Component Analysis (PCA) and Gabriel's biplot as applied to microarray expression data from plant pathology experiments. Availability: An example program in the publicly distributed statistical language R is available from the web site (www.tpp.uq.edu.au) and by e-mail from the contact. Contact: scott.chapman@csiro.au.
Resumo:
Little is known about the responses of Australian plants to excess metal, including Mn. It is important to remedy this lack of information so that knowledgeable decisions can be made about managing Mn contaminated sites where inhabited by Australian vegetation. Acacia holosericea, Melaleuca leucadendra, Eucalyptus crebra and Eucalyptus camaldulensis were grown in dilute solution culture for 10 weeks. The seedlings ( 42 days old) were exposed to six Mn treatments viz., 1, 8, 32, 128, 512 and 2048 muM. The order of tolerance to toxic concentrations of Mn was A. holosericea congruent to = E. crebra < M. leucadendra < E. camaldulensis, the critical external concentrations being approximately 5.1, 5.0, 21 and 330 muM, respectively. The critical tissue Mn concentrations for the youngest fully expanded leaf and total shoots were, respectively, 265 and 215 mug g(-1) DM for A. holosericea, 445 and 495 mug g(-1) DM for M. leucadendra, 495 and 710 mug g(-1) DM for E. crebra and 7230 and 6510 mug g(-1) DM for E. camaldulensis. The high tolerance of E. camaldulensis ( as opposed to the sensitivity of E. crebra) to excess Mn raises concern about fauna feeding on the plant and is consistent with hypotheses suggesting the Eucalyptus subgenus Symphomyrtus is particularly tolerant of stress, including excess Mn. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the management of Mn toxic sites.
Resumo:
Amyloid-beta peptide (A beta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic A beta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/ peptide ratios of > 0.6:1 by EPR spectroscopy. The toxicity of the A beta-Cu2+ complex to cultured primary cortical neurons was attenuated when either the pi- or tau-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl- 1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. P-31 magic angle spinning solid-state NMR showed that A beta and A beta-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the A beta toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.
Resumo:
A small survey of the potting mix taken from 15 consignments of nursery grown plants imported into Western Australia from other states in Australia found that Phytophthora spp. were present in 10% of the samples and Pythium spp. were present in 25% of the samples. Plant pathogenic nematodes were isolated from 12 of 13 consignments. Potting mix appears to be an important route by which plant pathogens can be passively introduced into Western Australia.
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.