19 resultados para mean reversion
Resumo:
Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Resumo:
There has been a resurgence of interest in the mean trace length estimator of Pahl for window sampling of traces. The estimator has been dealt with by Mauldon and Zhang and Einstein in recent publications. The estimator is a very useful one in that it is non-parametric. However, despite some discussion regarding the statistical distribution of the estimator, none of the recent works or the original work by Pahl provide a rigorous basis for the determination a confidence interval for the estimator or a confidence region for the estimator and the corresponding estimator of trace spatial intensity in the sampling window. This paper shows, by consideration of a simplified version of the problem but without loss of generality, that the estimator is in fact the maximum likelihood estimator (MLE) and that it can be considered essentially unbiased. As the MLE, it possesses the least variance of all estimators and confidence intervals or regions should therefore be available through application of classical ML theory. It is shown that valid confidence intervals can in fact be determined. The results of the work and the calculations of the confidence intervals are illustrated by example. (C) 2003 Elsevier Science Ltd. All rights reserved.