27 resultados para management structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fires are integral to the healthy functioning of most ecosystems and are often poorly understood in policy and management, however, the relationship between floristic composition and habitat structure is intrinsically linked, particularly after fire. The aim of this study was to test whether the variability of habitat structure or floristic composition and abundance in forests at a regional scale can be explained in terms of fire frequency using historical data and experimental prescribed burns. We tested this hypothesis in open eucalypt forests of Fraser Island off the east coast of Australia. Fraser Island dunes show progressive stages in plant succession as access to nutrients decreases across the Island. We found that fire frequency was not a good predictor of floristic composition or abundance across dune systems; rather, its affects were dune specific. In contrast, habitat structure was strongly influenced by fire frequency, independent of dune system. A dense understorey occurred in frequently burnt areas, whereas infrequently burnt areas had a more even distribution of plant heights. Plant communities returned to pre-burn levels of composition and abundances within 6 months of a fire and frequently burnt areas were dominated by early successional species of plant. These ecosystems were characterized by low diversity and frequently burnt areas on the east coast were dominated by Pteridium. Greater midstorey canopy cover in low frequency areas reduces light penetration and allows other species to compete more effectively with Pteridium. Our results strongly indicate that frequent fires on the Island have resulted in a decrease in relative diversity through dominance of several species. Prescribed fire represents a powerful management tool to shape habitat structure and complexity of Fraser Island forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional sensitivity and elasticity analyses of matrix population models have been used to p inform management decisions, but they ignore the economic costs of manipulating vital rates. For exam le, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously, These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For determining functionality dependencies between two proteins, both represented as 3D structures, it is an essential condition that they have one or more matching structural regions called patches. As 3D structures for proteins are large, complex and constantly evolving, it is computationally expensive and very time-consuming to identify possible locations and sizes of patches for a given protein against a large protein database. In this paper, we address a vector space based representation for protein structures, where a patch is formed by the vectors within the region. Based on our previews work, a compact representation of the patch named patch signature is applied here. A similarity measure of two patches is then derived based on their signatures. To achieve fast patch matching in large protein databases, a match-and-expand strategy is proposed. Given a query patch, a set of small k-sized matching patches, called candidate patches, is generated in match stage. The candidate patches are further filtered by enlarging k in expand stage. Our extensive experimental results demonstrate encouraging performances with respect to this biologically critical but previously computationally prohibitive problem.