88 resultados para library materials
Resumo:
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
Resumo:
Adsorption of argon and nitrogen at their respective boiling points in cylindrical pores of MCM-41 type silica-like adsorbents is studied by means of a non-local density functional theory (NLDFT), which is modified to deal with amorphous solids. By matching the theoretical results of the pore filling pressure versus pore diameter against the experimental data, we arrive at a conclusion that the adsorption branch (rather than desorption) corresponds to the true thermodynamic equilibrium. If this is accepted, we derive the optimal values for the solid–fluid molecular parameters for the system amorphous silica–Ar and amorphous silica–N2, and at the same time we could derive reliably the specific surface area of non-porous and mesoporous silica-like adsorbents, without a recourse to the BET method. This method is then logically extended to describe the local adsorption isotherms of argon and nitrogen in silica-like pores, which are then used as the bases (kernel) to determine the pore size distribution. We test this with a number of adsorption isotherms on the MCM-41 samples, and the results are quite realistic and in excellent agreement with the XRD results, justifying the approach adopted in this paper.
Resumo:
Adsorption of nitrogen in spherical pores of FDU-1 silica at 77 K is considered by means of a nonlocal density functional theory (NLDFT) accounting for a disordered structure of pore walls. Pore size distribution analysis of various FDU-1 samples subject to different temperatures of calcination revealed three distinct groups of pores. The principal group of pores is identified as ordered spherical mesopores connected with each other by smaller interconnecting pores and irregular micropores present in the mesopore walls. To account for the entrances (connecting pores) into spherical mesopores, a concept of solid mass distribution with respect to the apparent density was introduced. It is shown that the introduction of the aforementioned distribution was sufficient to quantitatively describe experimental adsorption isotherms over the entire range of relative pressures spanning six decades.
Resumo:
A thermodynamic analysis of nitrogen adsorption in cylindrical pores of MCM-41 and SBA-15 samples at 77 K is presented within the framework of the Broekhoff and de Boer (BdB) theory. We accounted for the effect of the solid surface curvature on the potential exerted by the pore walls. The developed model is in quantitative agreement with the non-local density functional theory (NLDFT) for pores larger than 2 tun. This modified BdB theory accounting for the Curvature Dependent Potential (CDP-BdB) was applied to determine the pore size distribution (PSD) of a number of MCM-41 and SBA-15 samples on the basis of matching the equilibrium theoretical isotherm against the adsorption branch of the experimental isotherm. In all cases investigated the PSDs determined with the new approach are very similar to those determined with the non-local density functional theory also using the same basis of matching of theoretical isotherm against the experimental adsorption branch. The developed continuum theory is very simple in its utilization, suggesting that CDP-BdB could be used as an alternative tool to obtain PSD for mesoporous solids from the analysis of adsorption branch of adsorption isotherms of any sub-critical fluids.
Resumo:
In this paper we apply a new method for the determination of surface area of carbonaceous materials, using the local surface excess isotherms obtained from the Grand Canonical Monte Carlo simulation and a concept of area distribution in terms of energy well-depth of solid–fluid interaction. The range of this well-depth considered in our GCMC simulation is from 10 to 100 K, which is wide enough to cover all carbon surfaces that we dealt with (for comparison, the well-depth for perfect graphite surface is about 58 K). Having the set of local surface excess isotherms and the differential area distribution, the overall adsorption isotherm can be obtained in an integral form. Thus, given the experimental data of nitrogen or argon adsorption on a carbon material, the differential area distribution can be obtained from the inversion process, using the regularization method. The total surface area is then obtained as the area of this distribution. We test this approach with a number of data in the literature, and compare our GCMC-surface area with that obtained from the classical BET method. In general, we find that the difference between these two surface areas is about 10%, indicating the need to reliably determine the surface area with a very consistent method. We, therefore, suggest the approach of this paper as an alternative to the BET method because of the long-recognized unrealistic assumptions used in the BET theory. Beside the surface area obtained by this method, it also provides information about the differential area distribution versus the well-depth. This information could be used as a microscopic finger-print of the carbon surface. It is expected that samples prepared from different precursors and different activation conditions will have distinct finger-prints. We illustrate this with Cabot BP120, 280 and 460 samples, and the differential area distributions obtained from the adsorption of argon at 77 K and nitrogen also at 77 K have exactly the same patterns, suggesting the characteristics of this carbon.
Resumo:
In vitro measurements of skin absorption are an increasingly important aspect of regulatory studies, product support claims, and formulation screening. However, such measurements are significantly affected by skin variability. The purpose of this study was to determine inter- and intralaboratory variation in diffusion cell measurements caused by factors other than skin. This was attained through the use of an artificial (silicone rubber) rate-limiting membrane and the provision of materials including a standard penetrant, methyl paraben (MP), and a minimally prescriptive protocol to each of the 18 participating laboratories. Standardized calculations of MP flux were determined from the data submitted by each laboratory by applying a predefined mathematical model. This was deemed necessary to eliminate any interlaboratory variation caused by different methods of flux calculations. Average fluxes of MP calculated and reported by each laboratory (60 +/- 27 mug cm(-2) h(-1), n = 25, range 27-101) were in agreement with the standardized calculations of MP flux (60 +/- 21 mug cm(-2) h(-1), range 19-120). The coefficient of variation between laboratories was approximately 35% and was manifest as a fourfold difference between the lowest and highest average flux values and a sixfold difference between the lowest and highest individual flux values. Intra-laboratory variation was lower, averaging 10% for five individuals using the same equipment within a single laboratory. Further studies should be performed to clarify the exact components responsible for nonskin-related variability in diffusion cell measurements. It is clear that further developments of in vitro methodologies for measuring skin absorption are required. (C) 2005 Wiley-Liss, Inc.
Resumo:
In this work, we propose an improvement of the classical Derjaguin-Broekhoff-de Boer (DBdB) theory for capillary condensation/evaporation in mesoporous systems. The primary idea of this improvement is to employ the Gibbs-Tolman-Koenig-Buff equation to predict the surface tension changes in mesopores. In addition, the statistical film thickness (so-called t-curve) evaluated accurately on the basis of the adsorption isotherms measured for the MCM-41 materials is used instead of the originally proposed t-curve (to take into account the excess of the chemical potential due to the surface forces). It is shown that the aforementioned modifications of the original DBdB theory have significant implications for the pore size analysis of mesoporous solids. To verify our improvement of the DBdB pore size analysis method (IDBdB), a series of the calcined MCM-41 samples, which are well-defined materials with hexagonally ordered cylindrical mesopores, were used for the evaluation of the pore size distributions. The correlation of the IDBdB method with the empirically calibrated Kruk-Jaroniec-Sayari (KJS) relationship is very good in the range of small mesopores. So, a major advantage of the IDBdB method is its applicability for small mesopores as well as for the mesopore range beyond that established by the KJS calibration, i.e., for mesopore radii greater than similar to4.5 nm. The comparison of the IDBdB results with experimental data reported by Kruk and Jaroniec for capillary condensation/evaporation as well as with the results from nonlocal density functional theory developed by Neimark et al. clearly justifies our approach. Note that the proposed improvement of the classical DBdB method preserves its original simplicity and simultaneously ensures a significant improvement of the pore size analysis, which is confirmed by the independent estimation of the mean pore size by the powder X-ray diffraction method.
Resumo:
We report kinetic molecular sieving of hydrogen and deuterium in zeolite rho at low temperatures, using atomistic molecular dynamics simulations incorporating quantum effects via the Feynman-Hibbs approach. We find that diffusivities of confined molecules decrease when quantum effects are considered, in contrast with bulk fluids which show an increase. Indeed, at low temperatures, a reverse kinetic sieving effect is demonstrated in which the heavier isotope, deuterium, diffuses faster than hydrogen. At 65 K, the flux selectivity is as high as 46, indicating a good potential for isotope separation.
Resumo:
The South Pacific is an area of emerging importance to lawyers in North America and throughout the world. Dr. Care's bibliography provides a comprehensive introduction to the legal materials of Melanesia, Micronesia, and Polynesia.
Resumo:
The nitrogen substitution in carbon materials is investigated theoretically using the density functional theory method. Our calculations show that nitrogen substitution decreases the hydrogen adsorption energy if hydrogen atoms are adsorbed on both nitrogen atoms and the neighboring carbon atoms. On the contrary, the hydrogen adsorption energy can be increased if hydrogen atoms are adsorbed only on the neighboring carbon atoms. The reason can be explained by the electronic structures analysis of N-substituted graphene sheets. Nitrogen substitution reduces the pi electron conjugation and increases the HOMO energy of a graphene sheet, and the nitrogen atom is not stable due to its 3-valent character. This raises an interesting research topic on the optimization of the N-substitution degree, and is important to many applications such as hydrogen storage and the tokamaks device. The electronic structure studies also explain well why nitrogen substitution increases the capacitance but decreases the electron conductivity of carbon electrodes as was experimentally observed in our experiments on the supercapacitor.
Resumo:
Equilibrium adsorption and desorption in mesoporous adsorbents is considered on the basis of rigorous thermodynamic analysis, in which the curvature-dependent solid-fluid potential and the compressibility of the adsorbed phase are accounted for. The compressibility of the adsorbed phase is considered for the first time in the literature in the framework of a rigorous thermodynamic approach. Our model is a further development of continuum thermodynamic approaches proposed by Derjaguin and Broekhoff and de Boer, and it is based on a reference isotherm of a non-porous material having the same chemical structure as that of the pore wall. In this improved thermodynamic model, we incorporated a prescription for transforming the solid-fluid potential exerted by the flat reference surface to the potential inside cylindrical and spherical pores. We relax the assumption that the adsorbed film density is constant and equal to that of the saturated liquid. Instead, the density of the adsorbed fluid is allowed to vary over the adsorbed film thickness and is calculated by an equation of state. As a result, the model is capable to describe the adsorption-desorption reversibility in cylindrical pores having diameter less than 2 nm. The generalized thermodynamic model may be applied to the pore size characterization of mesoporous materials instead of much more time-consuming molecular approaches. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nitrogen adsorption on a surface of a non-porous reference material is widely used in the characterization. Traditionally, the enhancement of solid-fluid potential in a porous solid is accounted for by incorporating the surface curvature into the solid-fluid Potential of the flat reference surface. However, this calculation procedure has not been justified experimentally. In this paper, we derive the solid-fluid potential of mesoporous MCM-41 solid by using solely the adsorption isotherm of that solid. This solid-fluid potential is then compared with that of the non-porous reference surface. In derivation of the solid-fluid potential for both reference surface and mesoporous MCM-41 silica (diameter ranging front 3 to 6.5 nm) we employ the nonlocal density functional theory developed for amorphous solids. It is found that, to out, surprise, the solid-fluid potential of a porous solid is practically the same as that for the reference surface, indicating that there is no enhancement due to Surface curvature. This requires further investigations to explain this unusual departure from our conventional wisdom of curvature-induced enhancement. Accepting the curvature-independent solid-fluid potential derived from the non-porous reference surface, we analyze the hysteresis features of a series of MCM-41 samples. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Objective: This study (a) evaluated the reading ability of patients following stroke and their carers and the reading level and content and design characteristics of the written information provided to them, (b) explored the influence of sociodemographic and clinical characteristics on patients' reading ability, and (c) described an education package that provides well-designed information tailored to patients' and carers' informational needs. Methods: Fifty-seven patients and 12 carers were interviewed about their informational needs in an acute stroke unit. Their reading ability was assessed using the Rapid Estimate of Adult Literacy in Medicine (REALM). The written information provided to them in the acute stroke unit was analysed using the SMOG readability formula and the Suitability Assessment of Materials (SAM). Results: Thirteen (22.8%) patients and 5 (41.7%) carers had received written stroke information. The mean reading level of materials analysed was 11th grade while patients read at a mean of 7-8th grade. Most materials (89%) scored as only adequate in content and design. Patients with combined aphasia read significantly lower (4-6th grade) than other patients (p = 0.001). Conclusion: Only a small proportion of patients and carers received written materials about stroke and the readability level and content and design characteristics of most materials required improvement. Practice implications: When developing and distributing written materials about stroke, health professionals should consider the reading ability and informational needs of the recipients, and the reading level and content and design characteristics of the written materials. A computer system can be used to generate written materials tailored to the informational needs and literacy skills of patients and carers. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Monte Carlo and molecular dynamics simulations and neutron scattering experiments are used to study the adsorption and diffusion of hydrogen and deuterium in zeolite Rho in the temperature range of 30-150 K. In the molecular simulations, quantum effects are incorporated via the Feynman-Hibbs variational approach. We suggest a new set of potential parameters for hydrogen, which can be used when Feynman-Hibbs variational approach is used for quantum corrections. The dynamic properties obtained from molecular dynamics simulations are in excellent agreement with the experimental results and show significant quantum effects on the transport at very low temperature. The molecular dynamics simulation results show that the quantum effect is very sensitive to pore dimensions and under suitable conditions can lead to a reverse kinetic molecular sieving with deuterium diffusing faster than hydrogen.