276 resultados para large deviation theory
Resumo:
We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is applicable over a wide range of densities and pore sizes. In the Henry law low-density region the theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at higher densities beyond this region the contribution from viscous flow becomes significant and is included through our recent approach utilizing a local average density model. The model is validated by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical methane transport in cylindrical silica pores over a wide range of temperature, density, and pore size. The model for the Henry law region is exact and found to yield an excellent match with simulations at all conditions, including the single-file region of very small pore size where it is shown to provide the density-independent collective transport coefficient. It is also shown that in the absence of dispersive interactions the model reduces to the classical Knudsen result, but in the presence of such interactions the latter model drastically overpredicts the transport coefficient. For larger micropores beyond the single-file region the transport coefficient is reduced at high density because of intermolecular interactions and hindrance to particle crossings leading to a large decrease in surface slip that is not well represented by the model. However, for mesopores the transport coefficient increases monotonically with density, over the range studied, and is very well predicted by the theory, though at very high density the contribution from surface slip is slightly overpredicted. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation energy is not simply related to the minimum pore potential or the adsorption energy as generally assumed. (C) 2004 American Institute of Physics.
Resumo:
A retrospective audit was conducted in 1998 and 2000 to review the physiotherapy management of hospitalized children with cystic fibrosis (CF) at the Brisbane Royal Children's Hospital (RCH). The objective was to detect and explore possible changes in patient management in this time period and investigate whether these changes reflected changes in the current theory of CF management. All children over two years of age with CF admitted during 1998 and 2000 with pulmonary manifestation and who satisfied set criteria were included (n = 249). Relative frequency of each of six treatment modalities used were examined on two occasions, revealing some degree of change in practice reflecting the changes in current theory. There was a significant decrease in the frequency of usage of postural drainage with head-down tilt (p < 0.001), and autogenic drainage (p < 0.001) between 1998 and 2000. Modified postural drainage without head-down tilt (p < 0.001), and positive expiratory pressure devices (p < 0.001) were used more frequently in 2000 (p < 0.001). No significant changes were identified in the use of Flutter VRP1 (p = 0.145) and exercise (p = 0.763). No significant differences were found in population demographics or occurrence of concomitant factors that may influence patient management.
Resumo:
We present theory and simulations for a spectral narrowing scheme for laser diode arrays (LDAs) that employs optical feedback from a diffraction grating. We calculate the effect of the so-called smile of the LDA and show that it is possible to reduce the effect by using a cylindrical lens set at an angle to the beam. The scheme is implemented on a 19-element LDA with smile of 7.6 mu m and yields frequency narrowing from a free-running width of 2 to 0.15 nm. The experimental results are in good agreement with the theory. (c) 2005 Optical Society of America.
Resumo:
Equilibrium adsorption data of nitrogen on a series of nongraphitized carbon blacks and nonporous silica at 77 K were analyzed by means of classical density functional theory to determine the solid-fluid potential. The behavior of this potential profile at large distance is particularly considered. The analysis of nitrogen adsorption isotherms seems to indicate that the adsorption in the first molecular layer is localized and controlled mainly by short-range forces due to the surface roughness, crystalline defects, and functional groups. At distances larger than approximately 1.3-1.5 molecular diameters, the adsorption is nonlocalized and appears as a thickening of the adsorbed film with increasing bulk pressure in a relatively weak adsorption potential field. It has been found that the asymptotic decay of the potential obeys the power law with the exponent being -3 for carbon blacks and -4 for silica surface, which signifies that in the latter case the adsorption potential is mainly exerted by surface oxygen atoms. In all cases, the absolute value of the solid-fluid potential is much smaller than that predicted by the Lennard-Jones pair potential with commonly used solid-fluid molecular parameters. The effect of surface heterogeneity on the heat of adsorption is also discussed.
Resumo:
We provide here a detailed theoretical explanation of the floating molecule or levitation effect, for molecules diffusing through nanopores, using the oscillator model theory (Phys. Rev. Lett. 2003, 91, 126102) recently developed in this laboratory. It is shown that on reduction of pore size the effect occurs due to decrease in frequency of wall collision of diffusing particles at a critical pore size. This effect is, however, absent at high temperatures where the ratio of kinetic energy to the solid-fluid interaction strength is sufficiently large. It is shown that the transport diffusivities scale with this ratio. Scaling of transport diffusivities with respect to mass is also observed, even in the presence of interactions.
Resumo:
A theory is discussed of single-component transport in nanopores, recently developed by Bhatia and coworkers. The theory considers the oscillatory motion of molecules between diffuse wall collisions, arising from the fluid-wall interaction, along with superimposed viscous flow due to fluid-fluid interaction. The theory is tested against molecular dynamics simulations for hydrogen, methane, and carbon tetrafluoride flow in cylindrical nanopores in silica. Although exact at low densities, the theory performs well even at high densities, with the density dependency of the transport coefficient arising from viscous effects. Such viscous effects are reduced at high densities because of the large increase in viscosity, which explains the maximum in the transport coefficient with increase in density. Further, it is seen that in narrow pore sizes of less than two molecular diameters, where a complete monolayer cannot form on the surface, the mutual interference of molecules on opposite sides of the cross section can reduce the transport coefficient, and lead to a maximum in the transport coefficient with increasing density. The theory is also tested for the case of partially diffuse reflection and shows the viscous contribution to be negligible when the reflection is nearly specular. (c) 2005 American Institute of Chemical Engineers AIChE J, 52: 29-38, 2006.
Resumo:
A novel shear plate was used to make direct bed shear stress measurements in laboratory dam break and swash flows on smooth, fixed, impermeable beds. The pressure gradient due to the slope of the fluid free-surface across the plate was measured using pressure transducers. Surface elevation was measured at five locations using acoustic displacement sensors. Flow velocity was measured using an Acoustic-Doppler Velocimeter and calculated using the ANUGA inundation model. The measured bed shear stress at the dam break fluid tip for an initially dry, horizontal bed was close to twice that estimated using steady flow theory. The temporal variation of swash bed shear stress showed a large peak in landward directed stress at the uprush tip, followed by a rapid decay throughout the uprush flow interior. The peak seaward directed stress during the backwash phase was less than half that measured in the uprush. Close to the still water line, in the region of bore collapse and at the time of initial uprush, favourable pressure gradients were measured. In the lower swash region predominately weak adverse pressure gradients were measured.
Resumo:
Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.
Resumo:
Current debates about educational theory are concerned with the relationship between knowledge and power and thereby issues such as who possesses a truth and how have they arrived at it, what questions are important to ask, and how should they best be answered. As such, these debates revolve around questions of preferred, appropriate, and useful theoretical perspectives. This paper overviews the key theoretical perspectives that are currently used in physical education pedagogy research and considers how these inform the questions we ask and shapes the conduct of research. It also addresses what is contested with respect to these perspectives. The paper concludes with some cautions about allegiances to and use of theories in line with concerns for the applicability of educational research to pressing social issues.
Resumo:
Mediated physical activity interventions can reach large numbers of people at low cost. Programs delivered through the mail that target the stage of motivational readiness have been shown to increase activity. Communication technology (websites and e-mail) might provide a means for delivering similar programs. Randomized trial conducted between August and October 2001. Participants included staff at an Australian university (n=655; mean AGE=43, standard deviation, 10 years). Participants were randomized to either an 8-week, stage-targeted print program (Print) or 8-week, stage-targeted website (Web) program. The main outcome was change in self-reported physical activity.
Resumo:
We report absolute values for the radiative relaxation quantum yield of synthetic eumelanin as a function of excitation energy. These values were determined by correcting for pump beam attenuation and emission reabsorption in both eumelanin samples and fluorescein standards over a large range of concentrations. Our results confirm that eumelanins are capable of dissipating >99.9% of absorbed UV and visible radiation through nonradiative means. Furthermore, we have found that the radiative quantum yield of synthetic eumelanin is excitation energy dependent. This observation is supported by corrected emission spectra, which also show a clear dependence of both peak position and peak width on excitation energy. Our findings indicate that photoluminescence emission in eumelanins is derived from ensembles of small chemically distinct oligomeric units that can be selectively pumped. This hypothesis lends support to the theory that the basic structural unit of eumelanin is oligomeric rather than heteropolymeric.
Resumo:
We present a resonating-valence-bond theory of superconductivity for the Hubbard-Heisenberg model on an anisotropic triangular lattice. Our calculations are consistent with the observed phase diagram of the half-filled layered organic superconductors, such as the beta, beta('), kappa, and lambda phases of (BEDT-TTF)(2)X [bis(ethylenedithio)tetrathiafulvalene] and (BETS)(2)X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order transition from a Mott insulator to a d(x)(2)-y(2) superconductor with a small superfluid stiffness and a pseudogap with d(x)(2)-y(2) symmetry.
Resumo:
A survey study of twenty-two Australian CEOs and their subordinates assessed relationships between Australian leader motives, Australian value based leader behaviour, subordinate tall poppy attitudes and subordinate commitment, effectiveness, motivation and satisfaction (CEMS). On the whole, the results showed general support for value based leadership processes. Subsequent regression analyses of the second main component of Value Based Leadership Theory, value based leader behaviour, revealed that the collectivistic, inspirational, integrity and visionary behaviour sub-scales of the construct were positively related with subordinate CEMS. Although the hypothesis that subordinate tall poppy attitudes would moderate value based leadership processes was not clearly supported, subsequent regression analyses found that subordinate tall poppy attitudes were negatively related with perceptions of value based leader behaviour and CEMS. These findings suggest complex relationships between the three constructs, and the proposed model for the Australian context is accordingly amended. Overall, the research supports the need to consider cultural-specific attitudes in management development.