260 resultados para internal structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The irregular vibronic structure in the S-1<--S-0 resonant two-photon ionization (R2PI) spectrum of supersonically cooled triptycene is a result of a classic Exe Jahn-Teller effect [A. Furlan et al., J. Chem. Phys. 96, 7306 (1992)]. This is well characterized and can be used as an effective probe of intramolecular perturbations. Here we examine the S-1<--S-0 R2PI spectrum of 9-hydroxytriptycene and the fluorescence from various excited state vibronic levels. In this system the pseudorotation of the Jahn-Teller vibration is strongly coupled to the torsional motion of the bridgehead hydroxy group. This torsional motion results in a tunneling splitting in both the ground and excited states. The population of the upper level in the ground electronic state results in additional vibronic transitions becoming symmetry allowed in the R2PI spectrum that are forbidden in the bare triptycene molecule. The assignment of the R2PI and fluorescence spectra allows the potential energy surfaces of these vibrational modes to be accurately quantified. The full C-3v vibronic point group must be used to interpret the spectra. The time scale of the internal rotation of the-OH group and the butterfly flapping of the Jahn-Teller pseudorotation are of similar magnitude. The tunneling between the nine minima on the three dimensional potential energy surface is such that the Jahn-Teller pseudorotation occurs in concert with the-OH internal rotation. The Berry phase that is acquired during this motion is discussed. The simple physical picture emerges of the angle between two of the three benzene moieties opening in three equivalent ways in the S-1 electronic state. This geometry follows the position of the hydroxy group, which preferentially orients itself to point between these two rings. (C) 1998 American Institute of Physics. [S0021-9606(98)02348-4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mammalian purple acid phosphatases are highly conserved binuclear metal-containing enzymes produced by osteoclasts, the cells that resorb bone. The enzyme is a target for drug design because there is strong evidence that it is involved in bone resorption. Results: The 1.55 Angstrom resolution structure of pig purple acid phosphatase has been solved by multiple isomorphous replacement. The enzyme comprises two sandwiched beta sheets flanked by or-helical segments. The molecule shows internal symmetry, with the metal ions bound at the interface between the two halves. Conclusions: Despite less than 15% sequence identity, the protein fold resembles that of the catalytic domain of plant purple acid phosphatase and some serine/threonine protein phosphatases. The active-site regions of the mammalian and plant purple acid phosphatases differ significantly, however. The internal symmetry suggests that the binuclear centre evolved as a result of the combination of mononuclear ancestors. The structure of the mammalian enzyme provides a basis for antiosteoporotic drug design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the internal transcribed spacer 2 (ITS2) in twenty-two spp. of ticks from the subfamily Rhipicephalinae. A 104-109 base pair (bp) region was Imperfectly repeated In most ticks studied. Mapping the number of repeat copies on to a phylogeny from the ITS2 showed that there have been many Independent gains and losses of repeats. Comparison of the sequences of the repeat copies Indicated that in most taxa concerted evolution had played little if any role in the evolution of these regions, as the copies clustered by sequence position rather than species, In our putative secondary structure, each repeat copy can fold into a distinct and almost identical stem-loop complex; a gain or loss of a repeat copy apparently does not impair the function of the ITS2 in these ticks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of cyanocobalamin (CNCbl, vitamin 1312) on hepatitis C virus internal ribosome entry site (HCV IRES)-dependent initiation of translation was studied by ribosomal toeprinting and sucrose gradient centrifugation analysis. These results suggested that CNCbl did not inhibit HCV IRES-dependent translation by a competitive binding mechanism. CNCbl allowed 80 S elongation complex formation on the mRNA, but stalled the initiation at that point, effectively trapping the 80 S ribosomal complexes on the HCV TRES. CNCbl had no effect on cap-dependent mRNA, consistent with the known mRNA specificity of this translational inhibitor. To help elucidate the mechanism, comparative data were collected for the well-characterised translation inhibitors cycloheximide and 5'-guanylyl-imidophosphate, Although CNCbl stalled HCV IRES-dependent translation at approximately the same step in initiation as cycloheximide, the mechanisms of these two inhibitors are distinct. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have determined the crystal structure of the core (C) protein from the Kunjin subtype of West Nile virus (WNV), closely related to the NY99 strain of WNV, currently a major health threat in the U.S. WNV is a member of the Flaviviridae family of enveloped RNA viruses that contains many important human pathogens. The C protein is associated with the RNA genome and forms the internal core which is surrounded by the envelope in the virion. The C protein structure contains four a. helices and forms dimers that are organized into tetramers. The tetramers form extended filamentous ribbons resembling the stacked alpha helices seen in HEAT protein structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes two steps in the biosynthesis of branched-chain amino acids. Amino acid sequence comparisons across species reveal that there are two types of this enzyme: a short form (Class 1) found in fungi and most bacteria, and a long form (Class 11) typical of plants. Crystal structures of each have been reported previously. However, some bacteria such as Escherichia coli possess a long form, where the amino acid sequence differs appreciably from that found in plants. Here, we report the crystal structure of the E. coli enzyme at 2.6 A resolution, the first three-dimensional structure of any bacterial Class 11 KARI. The enzyme consists of two domains, one with mixed alpha/beta structure, which is similar to that found in other pyridine nucleotide-dependent dehydrogenases. The second domain is mainly alpha-helical and shows strong evidence of internal duplication. Comparison of the active sites between KARI of E. coli, Pseudomonas aeruginosa, and spinach shows that most residues occupy conserved positions in the active site. E. coli KARI was crystallized as a tetramer, the likely biologically active unit. This contrasts with P. aeruginosa KARI, which forms a dodecamer, and spinach KARI, a dimer. In the E. coli KARI tetramer, a novel subunit-to-subunit interacting surface is formed by a symmetrical pair of bulbous protrusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrin domain (PYD)-containing proteins are key components of pathways that regulate inflammation, apoptosis, and cytokine processing. Their importance is further evidenced by the consequences of mutations in these proteins that give rise to autoimmune and hyperinflammatory syndromes. PYDs, like other members of the death domain ( DD) superfamily, are postulated to mediate homotypic interactions that assemble and regulate the activity of signaling complexes. However, PYDs are presently the least well characterized of all four DD subfamilies. Here we report the three-dimensional structure and dynamic properties of ASC2, a PYD-only protein that functions as a modulator of multidomain PYD-containing proteins involved in NF-KB and caspase-1 activation. ASC2 adopts a six-helix bundle structure with a prominent loop, comprising 13 amino acid residues, between helices two and three. This loop represents a divergent feature of PYDs from other domains with the DD fold. Detailed analysis of backbone N-15 NMR relaxation data using both the Lipari-Szabo model-free and reduced spectral density function formalisms revealed no evidence of contiguous stretches of polypeptide chain with dramatically increased internal motion, except at the extreme N and C termini. Some mobility in the fast, picosecond to nanosecond timescale, was seen in helix 3 and the preceding alpha 2-alpha 3 loop, in stark contrast to the complete disorder seen in the corresponding region of the NALP1 PYD. Our results suggest that extensive conformational flexibility in helix 3 and the alpha 2-alpha 3 loop is not a general feature of pyrin domains. Further, a transition from complete disorder to order of the alpha 2-alpha 3 loop upon binding, as suggested for NALP1, is unlikely to be a common attribute of pyrin domain interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the late 19th Century, the choanae (or internal nares) of the Plesiosauria were identified as a pair of palatal openings located rostral to the external nares, implying a rostrally directed respiratory duct and air path inside the rostrum. Despite obvious functional shortcomings, this idea was firmly established in the scientific literature by the first decade of the 20th Century. The functional consequences of this morphology were only re-examined by the end of the 20th Century, leading to the conclusion that the choanae were not involved in respiration but instead in underwater olfaction, the animals supposedly breathing with the mouth agape. Re-evaluation of the palatal and internal cranial anatomy of the Plesiosauria reveals that the traditional identification of the choanae as a pair of fenestrae situated rostral to the external nares appears erroneous. These openings more likely represent the bony apertures of ducts that lead to internal salt glands situated inside the maxillary rostrum. The 'real' functional choanae (or caudal interpterygoid vacuities), are situated at the caudal end of the bony palate between the sub-temporal fossae, as was suggested in the mid-19th Century. The existence of a functional secondary palate in the Plesiosauria is therefore strongly supported, and the anatomical, physiological, and evolutionary implications of such a structure are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow