140 resultados para intermediate-temperature buffer layer (ITBF)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the structure of the daytime atmospheric boundary layer during onshore flow over a narrow coastal plain is presented. The main emphasis of the study is on the nature and causes of heating and cooling observed in the boundary layer temperature profiles. Measurements included vertical temperature profiles above at least two sites derived from radiosondes and aircraft, as well as surface estimates of radiative and sensible heat fluxes. Surface meteorological and pilot balloon data were also available, providing further evidence of short-term changes in atmospheric boundary layer structure. The Manawatu case was representative of autumnal anticyclonic conditions with weak pressure gradients, and illustrated typical diurnal development of a convective boundary layer over a coastal plain bordered by mountain ranges, with a transition from a stable nocturnal situation to a well-mixed profile in the afternoon. The profiles show surface input of heat propagating upwards through the boundary layer during the day, as well as entrainment of heat at the top associated with shear induced turbulence and/or penetrative convection. Applying a one-dimensional model, estimates of boundary layer heat budget components were obtained for four time periods during the day. Later periods were affected by cumulus cloud development at the top of the boundary layer, resulting in significant changes in individual components. Input of sensible heat from the surface decreased, while the addition of heat to the boundary layer from both cloud condensation and advection increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a time-dependent projected Gross-Pitaevskii equation to describe a partially condensed homogeneous Bose gas, and find that this equation will evolve randomized initial wave functions to equilibrium. We compare our numerical data to the predictions of a gapless, second order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)], and find that we can determine a temperature when the theory is valid. As the Gross-Pitaevskii equation is nonperturbative, we expect that it can describe the correct thermal behavior of a Bose gas as long as all relevant modes are highly occupied. Our method could be applied to other boson fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the two-particle local correlation for an interacting 1D Bose gas at finite temperature and classify various physical regimes. We present the exact numerical solution by using the Yang-Yang equations and Hellmann-Feynman theorem and develop analytical approaches. Our results draw prospects for identifying the regimes of coherent output of an atom laser, and of finite-temperature “fermionization” through the measurement of the rates of two-body inelastic processes, such as photoassociation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz–Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holographic interferometry measurements have been performed on high-speed, high-temperature gas flows with a laser output tuned near a resonant sodium transition. The technique allows the detection and quantification of the sodium concentration in the flow. By controlling the laser detuning and seeded sodium concentration, we performed flow visualization in low-density flows that are not normally detectable with standard interferometry. The technique was also successfully used to estimate the temperature in the boundary layer of the flow over a flat plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reversible linear master equation model is presented for pressure- and temperature-dependent bimolecular reactions proceeding via multiple long-lived intermediates. This kinetic treatment, which applies when the reactions are measured under pseudo-first-order conditions, facilitates accurate and efficient simulation of the time dependence of the populations of reactants, intermediate species and products. Detailed exploratory calculations have been carried out to demonstrate the capabilities of the approach, with applications to the bimolecular association reaction C3H6 + H reversible arrow C3H7 and the bimolecular chemical activation reaction C2H2 +(CH2)-C-1--> C3H3+H. The efficiency of the method can be dramatically enhanced through use of a diffusion approximation to the master equation, and a methodology for exploiting the sparse structure of the resulting rate matrix is established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue responses to the application of Rototags and Jumbo Rototags in the first dorsal fin of Carcharhinus melanopterus, C. obscurus and C. plumbeus were examined. The acute response included tissue tearing and haemorrhage and was present by 5 days post-tagging. The intermediate response had begun by 20 days post-tagging and continued beyond 207 days. This response involved decreased red blood cell activity as the inflammatory response commenced. The chronic response had begun by 301 days and was complete by 553 days with a layer of fibrous connective tissue walling off the tag. External damage to the fin was caused by continued abrasion by the tag. Repair scales were observed at 242 days using scanning electron microscopy and were confirmed histologically in 61- and 553-day samples. Repair scales were not seen in areas of continuous abrasion. No infection was observed in tissues surrounding the wound. Disruption of the fin surface was observed due to abrasion by the tag, but did not appear to cause a severe tissue reaction. The tissue responses observed were consistent with a normal, but relatively slow, healing in the vicinity of the tag wound. Use of Rototags or Jumbo Rototags appears to be an efficient way of marking elasmobranchs with minimal damage to the shark. (C) 1998 The Fisheries Society of the British Isles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of skin temperature and hydration status has been suggested by some researchers as a common cause of variation in bioimpedance measurements of the body. This paper details a simple method of measuring the transverse impedance of the skin. The measured resistance and reactance was found to decrease by 35% and 18% for an increase of 20 degrees C. Similarly a decrease in resistance and reactance of 20% and 25% respectively was detected after hydration of the skin. However, the changes in skin temperature and hydration were found to have no significant effect on the whole body bioimpedance measurements using the standard tetra-polar electrode technique. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parametric study is carried out to investigate how geological inhomogeneity affects the pore-fluid convective flow field, the temperature distribution, and the mass concentration distribution in a fluid-saturated porous medium. The related numerical results have demonstrated that (1) the effects of both medium permeability inhomogeneity and medium thermal conductivity inhomogeneity are significant on the pore-fluid convective flow and the species concentration distribution in the porous medium; (2) the effect of medium thermal conductivity inhomogeneity is dramatic on the temperature distribution in the porous medium, but the effect of medium permeability inhomogeneity on the temperature distribution may be considerable, depending on the Rayleigh number involved in the analysis; (3) if the coupling effect between pore-fluid flow and mass transport is weak, the effect of the Lewis number is negligible on the pore-fluid convective flow and temperature distribution, hut it is significant on the species concentration distribution in the medium.