17 resultados para interest rate exposure
Resumo:
There is interest in the postulate that cyclosporine a (CsA) contributes to the elevated homocysteine levels seen in organ transplant recipients, as hyperhomocysteinemia is now considered an independent risk factor for cardiovascular disease (CVD) and may partially explain the increased prevalence of CVD in this population. The main purpose of this investigation was to determine the effect of CsA administration on plasma homocysteine. Eighteen female Sprague Dawley rats (4 months old) were randomly assigned to either a treatment or a control group. For 18 days the treatment group received of CsA (25 mg/kg/d) while the control group received the same volume of the vehicle. Blood samples obtained following sacrifice to measure CsA, total homocysteine, and plasma creatinine. There were no significant differences in plasma homocysteine (mean values SD: treatment = 4.79 +/- 0.63 mu mol/L, control = 4.46 +/- 0.75 mu mol/L; P = .37). Homocysteine was not significantly correlated with final CsA concentrations (r = .17; P = .69). There was a significant difference in plasma creatinine values between the two groups (treatment = 60.44 +/- 7.68 mu mol/L, control = 46.33 +/- 1.66 mu mol/L; P < .001). Furthermore, plasma homocysteine and creatinine were positively correlated with the treatment group (r = .73; P < .05) but not the controls (r = -.10; P = .81). In conclusion, CsA does not influence plasma homocysteine concentrations in rats.
Resumo:
Changes in heart rate (f(H)) and cloacal ventilation frequency (f(C)) were investigated in the Fitzroy turtle, Rheodytes leukops, under normoxic (17.85 kPa) and hypoxic (3.79 kPa) conditions at 25 degrees C. Given R. leukops' high reliance on aquatic respiration via the cloacal bursae, the objective Of this Study was to examine the effect of varying aquatic PO2 levels upon the expression of a bradycardia in a freely diving, bimodally respiring turtle. In normoxia, mean diving f(H) and f(C) for R. leukops remained constant with increasing submergence length, indicating that a bradycardia failed to develop during extended dives of up to 3 days. Alternatively, exposure to aquatic hypoxia resulted in the expression of a bradycardia as recorded by a decreasing mean diving f(H) with increasing dive duration. The observed bradycardia is attributed to a hypoxic-induced metabolic depression, possibly facilitated by a concurrent decrease in f(C). Results suggest that R. leukops alters its strategy from aquatic O-2 extraction via cloacal respiration in normoxia to O-2 conservation when exposed to aquatic hypoxia for the purpose of extending dive duration. Upon surfacing, a significant tachycardia was observed for R. leukops regardless of aquatic PO2, presumably functioning to rapidly equilibrate blood and tissue gas tensions with alveolar gas to reduce surfacing duration.