20 resultados para incremental bending
Resumo:
As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.
Resumo:
Data refinements are refinement steps in which a program’s local data structures are changed. Data refinement proof obligations require the software designer to find an abstraction relation that relates the states of the original and new program. In this paper we describe an algorithm that helps a designer find an abstraction relation for a proposed refinement. Given sufficient time and space, the algorithm can find a minimal abstraction relation, and thus show that the refinement holds. As it executes, the algorithm displays mappings that cannot be in any abstraction relation. When the algorithm is not given sufficient resources to terminate, these mappings can help the designer find a suitable abstraction relation. The same algorithm can be used to test an abstraction relation supplied by the designer.