47 resultados para inclusion compounds
Resumo:
The ground and excited state geometry of the six-coordinate copper(II) ion is examined in detail using the CuF64- and Cu(H2O)(6)(2+) complexes as examples. A variety of spectroscopic techniques are used to illustrate the relations between the geometric and electronic properties of these complexes through the characterization of their potential energy surfaces.
Resumo:
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Flash vacuum thermolysis of a large variety of heterocyclic compounds is a useful means of production of ketenes, ketenimines, thioketenes, allenes, iminopropadienones, bis(imino)propadienes, iminopropadienethiones, carbodiimides, isothiocyanates, acetylenes, fulminic acid, nitrile imines and nitrile ylides, nitriles, cyanamides, cyanates, and other compounds, often in preparatively useful yields.
Resumo:
A range of organohalogen compounds (10 polychlorinated biphenyl [PCB] congeners, DDT and metabolites, chlordane-related compounds, the potential natural organochlorine compound Q1, toxaphene, hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and several yet unidentified brominated compounds) were detected in the blubber of four bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis), and seven dugongs (Dugong dugon), as well as in adipose tissue of a green turtle (Chelonia mydas) and a python (Morelia spilota) from northeast Queensland (Australia). The green turtle and dugongs accumulated lower organohalogen levels than the dolphins. Lower levels in dugongs were expected because this species is exclusively herbivorous. Highest PCB and DDT levels recorded in dugongs were 209 and 173 mug/kg lipids, respectively. Levels of the nonanthropogenic heptachlorinated compound Q1 (highest level in dugongs was 160 mug/kg lipids) were estimated using the ECD response factor of trans-nonachlor. Highest organohalogen levels were found in blubber of dolphins for sumDDT (575-52,500 mug/kg) and PCBs (600-25,500 mug/kg lipids). Furthermore, Q1 was a major organohalogen detected in all samples analyzed, ranging from 450 -9,100 mug/kg lipids. The highest concentration of Q1 determined in this study represents the highest concentration reported to date in an environmental sample. Levels of chlordane-related compounds were also high (280-7,700 mug/kg, mainly derived from trans-nonachlor), but concentrations of hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and toxaphene were relatively low and contributed little to the overall organohalogen contamination. Furthermore, a series of three major (BC-1, BC-2, and BC-3) and six minor (BC-4 through BC-9) unknown brominated compounds were observable by extracting m/z 79 and m/z 81 from the GC/ECNI-MS full scan run. Structural proposals were made for the two major recalcitrant compounds (referred to as BC-1 and BC-2). BC-2 appears to be a tetrabromo-methoxy-diphenylether (512 u) and BC-1 has 14 u (corresponding with an additional CH2 group) more relative to BC-1. In general the organohalogen pattern observed in blubber of dolphins was different compared to similar samples from other locations in the world, which is apparent from the fact that the four major abundant signals in the GC/ECD chromatogram. of D. delphis originated from the four unknown compounds Q1, BC-1, BC-2, and BC-3.