45 resultados para human alveolar bone
Resumo:
Background: Susceptibility to periodontal infections may, in part, be genetically determined. Porphyromonas gingivalis is a major periodontopathogen, and the immune response to this organism requires T-cell help. The aim of the present study was to examine the specific T-cell cytokine responses to P gingivalis outer membrane antigens in a mouse model and their relationship with H-2 haplotype. Methods: BALB/c and DBA/2J (H-2(d)), CBACaH (H-2(k)), and C57BL6 (H-2(b)) mice were immunized with P gingivalis outer membrane antigens weekly for 3 weeks. One week after the final injection, the spleens were removed, and 6 T-cell lines specific for P gingivalis were established for each mouse strain. The percentage of CD4 and CD8 cells in the P gingivalis-specific T-cell lines staining positive for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma, and IL-10 was determined by 2-color flow cytometry. Results: The cytokine profiles of T-cell lines from BALB/c and DBA/2J mice showed no significant differences. Significantly fewer IL4+, IFN-gamma+, and IL-10+ CD4 cells than IL-4+, IFN-gamma+, and IL-10+ CD8 cells, respectively, were demonstrated for both strains. P gingivalis-specific T-cell lines generated from CBACaH mice were similar to those generated from BALB/c and DBA/2J mice; however, the mean percentage of IL4+ CD4 cells in CBACaH mice was lower than the percentage of IFN-gamma+ CD4 cells. Also, the mean percentage of IFN-gamma+ CD4 cells in CBACaH mice was significantly increased compared to DBA/2J mice. Unlike the other 3 strains, T-cell lines established from C57BL6 mice contained similar percentages of cytokine-positive cells, although the percentage of IL-4+ CD4 cells was reduced in comparison to the percentage of CD8 cells. However, comparisons with the other 3 strains demonstrated a higher percentage of IL-4+ CD4 cells than in lines established from the spleens of DBA/2J mice, IFN-gamma+ CD4 cells than in lines established from BALB/c and CBACaH mice, and IL-10+ CD4 cells than in lines established from all 3 other strains. No significant differences in the percentage of positive CD8 cells were demonstrated between lines in the 4 strains of mice. Conclusion: The specific T-cell response to P gingivalis in mice may, in the case of the CD4 response, depend on MHC genes. These findings are consistent with the concept that patient susceptibility is important to the outcome of periodontal infection and may, in part, be genetically determined.
Differential expression and distribution of syndecan-1 and-2 in periodontal wound healing of the rat
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell-cell and cell-matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell-cell and cell-matrix interactions, while syndecan-2 showed a predilection to associate with cell-matrix interactions during hard tissue formation.
Resumo:
This review considers the considerable similarities between periodontal disease and rheumatoid arthritis (RA). While the etiology of these two diseases may differ, the underlying pathogenic mechanisms are remarkably similar and it is possible that individuals manifesting both periodontitis and RA may suffer from a unifying underlying systemic dysregulation of the inflammatory response. In light of these findings, the implications for the use of disease-modifying medications in the management of these two chronic inflammatory conditions is apparent. Further longitudinal studies and medication-based intervention studies are required to determine just how closely these two conditions are allied.
Resumo:
In the toothless (tl/tl) osteopetrotic rat, teeth form but fail to erupt. Treatment of tl/tl rats with colony-stimulating factor-1 (CSF-1) activates bone resorption by osteoclasts, permits tooth eruption, and up-regulates the immunoreactivity of bone marrow mononuclear cells to growth hormone receptor (GHr) and insulin-like growth factor (IGF)-I. This study examined the distribution of tartrate-resistant acid phosphatase (TRAP) and immunoreactivity for GHr and IGF-I in osteoclast-like cells located on the alveolar bone margin, adjacent to the lower first molar crown, in 14-day-old normal and tl/tl rats, following treatment with CSF-1. Osteoclast-like cells demonstrated a positive reaction for TRAP, GHr, and IGF-I in all groups. However, in tl/tl tissue, osteoclast-like cells were generally negative for GHr. There was no significant difference in the total number of TRAP, GHr, and IGF-I-positive osteoclast-like cells on the adjacent bone margin in normal, normal treated with CSF-1, and tl/tl rats. CSF-1 treatment of the tl/tl rat significantly increased the total number of osteoclast-like cells, which were positive for TRAP (p < 0.001), GHr (p < 0.05) and IGF-I (P < 0.01).
Resumo:
Periodontitis and rheumatoid arthritis (RA) appear to share many pathologic features. In this review, the common pathologic mechanisms of these two common chronic conditions are explored. Emerging evidence now suggests a strong relationship between the extent and severity of periodontal disease and RA. While this relationship is unlikely to be causal, it is clear that individuals with advanced RA are more likely to experience more significant periodontal problems compared to their non-RA counterparts, and vice versa. A case is made that these two diseases could be very closely related through common underlying dysfunction of fundamental inflammatory mechanisms. The nature of such dysfunction is still unknown. Nonetheless, there is accruing evidence to support the notion that both conditions manifest as a result of an imbalance between proinflammatory and anti-inflammatory cytokines. As a result, new treatment strategies are expected to emerge for both diseases that may target the inhibition of proinflammatory cytokines and destructive proteases. The clinical implications of the current data dictate that patients with RA should be carefully screened for their periodontal status.
Resumo:
Periodontitis is a chronic inflammatory disease that results in extensive soft and hard tissue destruction of the periodontium. Porphyromonas gingivalis possesses an array of virulence factors and has been shown to induce expression of inducible nitric oxide synthase (iNOS) in inflammatory cells. The aim of this study was to investigate the effect of eliminating iNOS in a murine model of P. gingivalis infection. This was achieved by utilizing a P. gingivalis-induced skin abscess model, and an alveolar bone loss model employing an oral infection of P. gingivalis in iNOS knockout mice. The results indicated that iNOS knockout mice exhibit more extensive soft tissue damage and alveolar bone loss in response to P. gingivalis infection compared to wild-type mice. The local immune response to P. gingivalis in iNOS knockout mice was characterized by increased numbers of polymorphonuclear monocytes, while the systemic immune response was characterized by high levels of interleukin-12. The iNOS is required for an appropriate response to P. gingivalis infection.
Resumo:
Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2 +/- 8.5 vs. 64.2 +/- 9.7 years; P = .0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (theta = 0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.
Resumo:
Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P
Resumo:
In this paper, we develop a simple four parameter population balance model of in vivo neutrophil formation following bone marrow rescue therapy. The model is used to predict the number and type of neutrophil progenitors required to abrogate the period of severe neutropenia that normally follows a bone marrow transplant. The estimated total number of 5 billion neutrophil progenitors is consistent with the value extrapolated from a human trial. The model provides a basis for designing ex vivo expansion protocols.
Resumo:
Several constitutively active mutant forms of the common β subunit of the human IL-3, IL-5 and GM-CSF receptors (hβc), which enable it to signal in the absence of ligand, have recently been described. Two of these, V449E and I374N, are amino acid substitutions in the transmembrane and extracellular regions of hβc, respectively. A third, FIΔ, contains a 37 amino acid duplication in the extracellular domain. We have shown previously that when expressed in primary murine haemopoietic cells, the extracellular mutants confer factor-independence on cells of the neutrophil and monocyte lineages only, whereas V449E does so on all cell types of the myeloid and erythroid compartments. To study the in vivo effects and leukaemic potential of these mutants, we have expressed all three in mice by bone marrow reconstitution using retrovirally infected donor cells. Expression of the extracellular mutants leads to an early onset, chronic myeloproliferative disorder marked by elevations in the neutrophil, monocyte, erythrocyte and platelet lineages. In contrast, expression of V449E leads to an acute leukaemia-like syndrome of anaemia, thrombocytopaenia and blast cell expansion. These data support the possibility that activating mutations in hβc are involved in haemopoietic disorders in man.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.