42 resultados para historic sites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples of dermal and epidermal tissues of epaulette sharks Hemiscyllium ocellatum were examined histologically to assess damage caused by tagging. Tissues from around tag sites were removed at time intervals ranging from 100 min to 284 days post-tagging. These samples showed acute and chronic responses to tagging. Acute responses consisted of localized tissue breakdown and haemorrhaging, and occurred within the first few hours after tag insertion. At 10 h post-tagging, an intermediate response was apparent. This phase was characterized by further haemorrhaging and red and white blood cell movement into the wound area. The chronic response observed in the 10-284-day post-tagging samples was characterized by fibrous tissue formation to sequester the tag. This tissue presumably protects the adjacent musculature from further trauma produced by movement of the tag and provides a continuous barrier between the internal and external milieu. Tissue repair appeared to progress consistently in all specimens and no secondary infections at the tag site were seen. Tagging produced only localized tissue disruption and did not appear to be detrimental to the long term health of individual sharks. Our findings show that spaghetti style dart tagging is an acceptable method for marking individuals (40-75+ cm total length) of this species. (C) 1997 The Fisheries Society of the British Isles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 12 cysteine residues in the flavivirus NS1 protein are strictly conserved, suggesting that they form disulfide bonds that are critical for folding the protein into a functional structure. In this study, we examined the intramolecular disulfide bond arrangement of NS1 of Murray Valley encephalitis virus and elucidated three of the six cysteine-pairing arrangements. Disulfide linkages were identified by separating tryptic-digested NS1 by reverse-phase high pressure liquid chromatography and analysing the resulting peptide peaks by protein sequencing, amino acid analysis and/or electrospray mass spectrometry. The pairing arrangements between the six amino-terminal cysteines were identified as follows: Cys(4)-Cys(15), Cys(55)-Cys(143) and Cys(179)-Cys(223). Although the pairing arrangements between the six carboxyterminal cysteines were not determined, we were able to eliminate several cysteine-pairing combinations. Furthermore, we demonstrated that all three putative N-linked glycosylation sites of NS1 are utilized and that the Asn(207) glycosylation site contains a mannose-rich glycan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been previously observed that the intrinsically weak variant GC donor sites, in order to be recognized by the U2-type spliceosome, possess strong consensus sequences maximized for base pair formation with U1 and U5/U6 snRNAs. However, variability in signal strength is a fundamental mechanism for splice site selection in alternative splicing. Here we report human alternative GC-AG introns (for the first time from any species), and show that while constitutive GC-AG introns do possess strong signals at their donor sites, a large subset of alternative GC-AG introns possess weak consensus sequences at their donor sites. Surprisingly, this subset of alternative isoforms shows strong consensus at acceptor exon positions 1 and 2. The improved consensus at the acceptor exon can facilitate a strong interaction with U5 snRNA, which tethers the two exons for ligation during the second step of splicing. Further, these isoforms nearly always possess alternative acceptor sites and always possess alternative acceptor sites and exhibit particularly weak polypyrimidine tracts characteristic of AG-dependent introns. The acceptor exon nucleotides are part of the consensus required for the U2AF(35)-mediated recognition of AG in such introns. Such improved consensus at acceptor exons is not found in either normal or alternative GT-AG introns having weak donor sites or weak polypyrimidine,tracts. The changes probably reflect mechanisms that allow GC-AG alternative intron isoforms to cope with two conflicting requirements, namely an apparent need for differential splice strength to direct the choice of alternative sites and a need for improved donor signals to compensate for the central mismatch base pair (C-A) in the RNA duplex of U1 snRNA and the pre-mRNA. The other important findings include (i) one in every twenty alternative introns is a GC-AG intron, and (ii) three of every five observed GC-AG introns are alternative isoforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1·Mre11·Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and UV; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after UV. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after UV) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530). However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1. Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently demonstrated that suppression of bone remodeling allows microdamage to accumulate, leading to reduced bone toughness in the rib cortex of dogs. This study evaluates the effects of reduced bone turnover produced by bisphosphonates on microdamage accumulation and biomechanical properties at clinically relevant skeletal sites in the same dogs. Thirty-six female beagles, 1-2 years old, were divided into three groups. The control group was treated daily for 12 months with saline vehicle (CNT), The remaining two groups were treated daily with risedronate at a dose of 0.5 mg/kg per day (RIS), or alendronate at 1.0 mg/kg per day (ALN) orally, The doses of these bisphosphonates were six times the clinical doses approved for treatment of osteoporosis in humans. After killing, the L-1 vertebra was scanned by dual-energy X-ray absorptiometry (DXA), and the L-2 vertebra and right ilium were assigned to histomorphometry, The L-3 vertebra, left ilium, Th-2 spinous process, and right femoral neck were used for microdamage analysis. The L-4 vertebra and Th-1 spinous process were mechanically tested to failure in compression and shear, respectively. One year treatment with risedronate or alendronate significantly suppressed trabecular remodeling in vertebrae (RIS 90%, ALN 95%) and ilium (RIS 76%, ALN 90%) without impairment of mineralization, and significantly increased microdamage accumulation in all skeletal sites measured. Trabecular bone volume and vertebral strength increased significantly following 12 month treatment. However, normalized toughness of the L-4 vertebra was reduced by 21% in both RIS (p = 0.06) and ALN (p = 0.05) groups. When the two bisphosphonate groups were pooled in a post hoc fashion for analysis, this reduction in toughness reached statistical significance (p = 0.02), This study demonstrates that suppression of trabecular bone turnover by high doses of bisphosphonates is associated with increased vertebral strength, even though there is significant microdamage accumulation and a reduction in the intrinsic energy absorption capacity of trabecular bone. (C) 2001 by Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aphelinid parasitoid Coccophagus gurneyi Compere has unusual sex-related host relationships. Females are diploid and develop internally within mealybugs Pseudococcus calceolariae (Maskell). Males, in contrast, are haploid and hyperparasitic, developing on primary parasitoid larvae within the mealybugs. Furthermore, males have been claimed to be capable of either internal or external development, depending on the precise site of deposition of the haploid egg. This diversity of developmental pathways could indicate the existence of a sibling-species complex. We therefore quantified the mating and ovipositional behaviour of C. gurneyi, for comparison with that of an undescribed sibling species. We also checked whether the females deposit male eggs in alternative sites. The pattern of mating was found to be typical of mating behaviour in Coccophagus spp. and was consistent among all mating pairs, suggesting that the colony comprised one species. Further, the mating behaviour was significantly different from that of the undescribed sibling species. The site of male egg deposition varied and is apparently dictated by two factors; whether the mealybug is parasitised and, if so, the size of the parasitoid it contains. If the mealybugs were unparasitised or if the parasitoids within the mealybugs were small (< 0.53 mm), male eggs were deposited within the mealybug haemocoel. If the parasitoids were large (> 1.05 mm), male eggs were deposited within the parasitoids. These results support the claim of alternate host relationships and developmental pathways within males of C. gurneyi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1.Mre11.Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and W; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after W. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after W) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530), However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1, Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new algorithm, PfAGSS, for predicting 3' splice sites in Plasmodium falciparum genomic sequences is described. Application of this program to the published P. falciparum chromosome 2 and 3 data suggests that existing programs result in a high error rate in assigning 3' intron boundaries. (C) 2001 Elsevier Science B.V. All rights reserved.