126 resultados para hepatic fibrogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) relies on the physical properties of unpaired protons in tissues to generate images. Unpaired protons behave like tiny bar magnets and will align themselves in a magnetic field. Radiofrequency pulses will excite these aligned protons to higher energy states. As they return to their original state, they will release this energy as radio waves. The frequency of the radio waves depends on the local magnetic field and by varying this over a subject, it is possible to build the images we are familiar with. In general, MRI has not been sufficiently sensitive or specific in the assessment of diffuse liver disease for clinical use. However, because of the specific characteristics of fat and iron, it may be useful in the assessment of hepatic steatosis and iron overload. Magnetic resonance imaging is useful in the assessment of focal liver disease, particularly in conjunction with contrast agents. Haemangiomas have a characteristic bright appearance on T-2 weighted images because of the slow flowing blood in dilated sinusoids. Focal nodular hyperplasia (FNH) has a homogenous appearance, and enhances early in the arterial phase after gadolinium injection, while the central scar typically enhances late. Hepatic adenomas have a more heterogenous appearance and also enhance in the arterial phase, but less briskly than FNH. Hepatocellular carcinoma is similar to an adenoma, but typically occurs in a cirrhotic liver and has earlier washout of contrast. The appearance of metastases depends on the underlying primary malignancy. Overall, MRI appears more sensitive and specific than computed tomography with contrast for the detection and evaluation of malignant lesions. (C) 2000 Blackwell Science Asia Pty Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA that enters the circulation is rapidly cleared both by tissue uptake and by DNase-mediated degradation. In this study, we have examined the uptake of linear plasmid DNA in an isolated perfused liver model and following intra-arterial administration to rats. We found that the DNA was rapidly taken up by the isolated perfused liver without degradation. The single-pass extraction ratio was 0.76 +/- 0.05, the mean transit time was 15.3 +/- 3.6 s, and the volume of distribution was 0.29 +/- 0.07 ml/g. Hepatic uptake was saturable and was inhibited by polyinosinic acid or polycationic liposomes but not by condensation of the DNA with polylysine. When the linear plasmid DNA was administered in vivo, plasma half-life was 3.1 +/- 0.2 min, volume of distribution was 670 +/- 85 ml/kg, and clearance was 32 +/- 4 min. Coadministration of cationic liposomes decreased the volume of distribution to 180 +/- 28 ml/kg as well as the half-life (2.6 +/- 0.2 min). By contrast, polyinosinic acid significantly increased the circulating half-life (7.7 +/- 0.5 min), decreased the volume of distribution (95 +/- 17 ml/kg), and partially inhibited DNA degradation. When administered along with the liposomes and the polyinosinic acid, the distribution of plasmid-derived radioactivity decreased in the liver and increased in most other peripheral tissues. This study shows that pharmacological manipulation of the uptake and degradation of DNA can alter its distribution and clearance in vivo. These results may be useful in optimizing gene delivery procedures for in vivo gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximated by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as ail alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models. (C) 1997 Society for Mathematical Biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distributed-tubes model of hepatic elimination is extended to include intermixing between sinusoids, resulting in the formulation of a new, interconnected-tubes model. The new model is analysed for the simple case of two interconnected tubes, where an exact solution is obtained. For the case of many strongly-interconnected tubes, it is shown that a zeroth-order approximation leads to the convection-dispersion model. As a consequence the dispersion number is expressed, for the first time, in terms of its main physiological determinants: heterogeneity of flow and density of interconnections between sinusoids. The analysis of multiple indicator dilution data from a perfused liver preparation using the simplest version of the model yields the estimate 10.3 for the average number of interconnections. The problem of boundary conditions for the dispersion model is considered from the viewpoint that the dispersion-convection equation is a zeroth-order approximation to the equations for the interconnected-tubes model. (C) 1997 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the transition from in utero to newborn life, the neonate becomes solely reliant upon its own drug clearance processes to metabolise xenobiotics. Whilst most studies of neonatal hepatic drug elimination have focussed upon in vitro expression and activities of drug-metabolising enzymes, the rapid physiological changes in the early neonatal period of life also need to be considered. There are dramatic changes in neonatal liver blood how and hepatic oxygenation due to the loss of the umbilical blood supply, the increasing portal vein blood flow, and the gradual closure of the ductus venosus shunt during the first week of life. These changes which may well affect the capacity of neonatal hepatic drug metabolism. The hepatic expression of cytochromes P450 1A2, 2C, 2D6, 2E1 and 3A4 develop at different rates in the postnatal period, whilst 3A7 expression diminishes. Hepatic glucuronidation in the human neonate is relatively immature at birth, which contrasts with the considerably more mature neonatal hepatic sulfation activity. Limited in vivo studies show that the human neonate can significantly metabolise xenobiotics but clearance is considerably less compared with the older infant and adult. The neonatal population included in pharmacological studies is highly heterogeneous with respect to age, body weight, ductus venosus closure and disease processes, making it difficult to interpret data arising from human neonatal studies. Studies in the perfused foetal and neonatal sheep liver have demonstrated how the oxidative and conjugative hepatic elimination of drugs by the intact organ is significantly increased during the first week of life, highlighting that future studies will need to consider the profound physiological changes that may influence neonatal hepatic drug elimination shortly after birth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & Aims: There is a significant relationship between inheritance of high transforming growth factor (TGF)-beta1 and angiotensinogen-producing genotypes and the development of progressive hepatic fibrosis in patients with chronic hepatitis C. In cardiac and renal fibrosis, TGF-beta1 production may be enhanced by angiotensin II, the principal effector molecule of the renin-angiotensin system. The aim of the present study was to determine the effects of the angiotensin converting enzyme inhibitor, captopril, on the progression of hepatic fibrosis in the rat bile duct ligation model. Methods: Rats were treated with captopril (100 mg kg(-1) day(-1)) commencing 1 or 2 weeks after bile duct ligation. Animals with bile duct ligation only and sham-operated animals sewed as controls. Four weeks after bile duct ligation, indices of fibrosis were assessed. Results: Cap topril treatment significantly reduced hepatic hydroxyproline levels, mean fibrosis score, steady state messenger RNA levels of TGF-beta1 and procollagen alpha1(I), and matrix metalloproteinase 2 and 9 activity. Conclusions: Captopril significantly attenuates the progression of hepatic fibrosis in the vat bile duct ligation model, and its effectiveness should be studied in human chronic liver diseases associated with progressive fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four animal models were used to quantitatively evaluate hepatic alterations in this study: (1) a carbon tetrachloride control group (phenobarbital treatment only), (2) a CCl4-treated group (phenobarbital with CCl4 treatment), (3) an alcohol-treated group (liquid diet with alcohol treatment), and (4) a pair-fed alcohol control group (liquid diet only). At the end of induction, single-pass perfused livers were used to conduct multiple indicator dilution (MID) studies. Hepatic spaces (vascular space, extravascular albumin space, extravascular sucrose space, and cellular distribution volume) and water hepatocyte permeability/surface area product were estimated from nonlinear regression of outflow concentration versus time profile data. The hepatic extraction ratio of H-3-taurocholate was determined by the nonparametric moments method. Livers were then dissected for histopathologic analyses (e.g., fibrosis index, number of fenestrae). In these 4 models, CCl4-treated rats were found to have the smallest vascular space, extravascular albumin space, H-3-taurocholate extraction, and water hepatocyte permeability/surface area product but the largest extravascular sucrose space and cellular distribution volume. In addition, a linear relationship was found to exist between histopathologic analyses (fibrosis index or number of fenestrae) and hepatic spaces. The hepatic extraction ratio of H-3-taurocholate and water hepatocyte permeability/surface area product also correlated to the severity of fibrosis as defined by the fibrosis index. In conclusion, the multiple indicator dilution data obtained from the in situ perfused rat liver can be directly related to histopathologic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional convection-dispersion model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. The extension of this model to include nonlinear kinetics and zonal heterogeneity of the liver is not straightforward and requires numerical solution of partial differential equation, which is not available in standard nonlinear regression analysis software. In this paper, we describe an alternative compartmental model representation of hepatic disposition (including elimination). The model allows the use of standard software for data analysis and accurately describes the outflow concentration-time profile for a vascular marker after bolus injection into the liver. In an evaluation of a number of different compartmental models, the most accurate model required eight vascular compartments, two of them with back mixing. In addition, the model includes two adjacent secondary vascular compartments to describe the tail section of the concentration-time profile for a reference marker. The model has the added flexibility of being easy to modify to model various enzyme distributions and nonlinear elimination. Model predictions of F, MTT, CV2, and concentration-time profile as well as parameter estimates for experimental data of an eliminated solute (palmitate) are comparable to those for the extended convection-dispersion model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl4)induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)- acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P-app) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl4-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P-app or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Zomepirac (ZP), a non-steroidal anti-inflammatory drug (NSAID), has been reported to cause immune-mediated liver injury. In vivo, ZP is metabolized to a chemically reactive acyl glucuronide conjugate (ZAG) which can undergo covalent adduct formation with proteins. Such acyl glucuronide-derived drug-protein adducts may be important in the development of immune and toxic responses caused by NSAID. We have shown using immunoabsorptions that the 110 kDa CD26 (dipeptidyl peptidase IV) is one of the hepatic target proteins for covalent modification by ZAG. In the present study, a CD26-deficient mouse strain was used to examine protein targets for covalent modification by ZP/metabolites in the liver. Methods and Results: The CD26-deficient phenotype was confirmed by immunohistochemistry, flow cytometry analysis, RT-PCR, enzyme assay and immunoblotting. Moreover, by using monoclonal antibody immunoblots, CD26 was not detected in the livers of ZP-treated CD26-deficient mice. Immunoblots using a polyclonal antiserum to ZP on liver from ZP-treated mice showed three major sizes of protein bands, in the 70, 110 and 140 kDa regions. Most, but not all, of the anti-ZP immunoreactivity in the 110 kDa region was absent from ZP-treated CD26-deficient mice. Conclusion: These data definitively showed that CD26 was a component of ZP-modified proteins in vivo. In addition, the data suggested that at least one other protein of approximately 110 kDa was modified by covalent adduct formation with ZAG. (C) 2002 Blackwell Science Asia Pty Ltd.