244 resultados para genetic relationships


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic and environmental sources of covariation among the P3(00) and online performance elicited in a delayed-response working memory task, and psychometric IQ assessed by the multidimensional aptitude battery, were examined in an adolescent twin sample. An association between frontal P3 latency and task performance (phenotypic r = -0.33; genotypic r = -0.49) was indicated, with genes (i.e. twin status) accounting for a large part of the covariation ( > 70%). In contrast, genes influencing P3 amplitude mediated only a small part (2%) of the total genetic variation in task performance. While task performance mediated 15% of the total genetic variation in IQ (phenotypic r = 0.22; genotypic r = 0.39) there was no association between P3 latency and IQ or P3 amplitude with IQ. The findings provide some insight into the inter-relationships among psychophysiological, performance and psychometric measures of cognitive ability, and provide support for a levels-of-processing genetic model of cognition where genes act on specific sub-components of cognitive processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationships between catalytic activity of cytochrome P450 2A6 (CYP2A6), polymorphism of CYP2A6 gene, gender and levels of body iron stores were analysed in a sample group of 202 apparently healthy Thais, aged 1947 years. Eleven individuals were found to have high activity of CYP2A6, judged by the relatively large amounts (11.2-14.6 mg) of 7-hydroyxcoumarin (7-OHC) excreted 3 h following administration of 15 mg of coumarin. Ten individuals, however, did not excrete any 7-OHC. Of these 10, four were found to have no CYP2A6 gene (whole gene deletion; CYP2A6*4 allele). The frequency of the CYP2A6 alleles; *1A, *1B and *4 in the whole sample group was 52, 40 and 8% while the frequency of the CYP2A6 gene types; *1A/* 1A, *1A/* 1B, *1B/* 1B, *1A/* 4, *1BI* 4, *4/* 4 was 29, 41, 16, 7, 5 and 2%. Subjects having CYP2A6* 1A/* 1B gene-type group were found to have higher rates of coumarin 7-hydroxylation compared with those of the CYP2A6* 1B/* 1B and CYP2A6* 1A/* 4 gene types. The inter-individual variability in CYP2A6 catalytic activity was therefore attributed in part to the CYP2A6 genetic polymorphism. Variation in CYP2A6 activity in this sample group was not associated with gender but, interestingly, it did show an inverse association with plasma ferritin; an indicator of body iron stores. Higher rates of coumarin 7-hydroxylation were found in individuals with low body iron stores (plasma ferritin < 20 μg/l) compared with subjects having normal body iron store status. Subjects (n = 16) with iron overload (plasma ferritin > 300 mug/l) also tended to have elevated rates of coumarin 7-hydroxylation. These results suggest an increased CYP2A6 expression in subjects who have excessive body iron stores. Further investigations into the underlying factors that may lead to increased expression of CYP2A6 in association with abnormal body iron stores are currently in progress in our laboratory. Pharmacogenetics 12:241-249 (C) 2002 Lippincott Williams Wilkins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were: (1) to quantify the genetic variation in foliar carbon isotope composition (delta(13)C) of 122 clones of ca. 4-year-old F-1 hybrids between slash pine (Pinus elliottii Engelm var. elliottii) and Caribbean pine (Pinus caribaea var. hondurensis Barr.,et Golf.) grown at two field experimental sites with different water and nitrogen availability in southeast Queensland, Australia, in relation to tree growth and foliar nitrogen concentration (N-mass); and (2) to assess the potential of using delta(13)C measurements, in the foliage materials collected from the clone hedges at nursery and the 4-year-old tree canopies in the field, as an indirect index of tree water use efficiency for selecting elite F-1 hybrid pine clones with improved tree growth. There were significant differences in foliar delta(13)C between the nursery hedges and the 4-year-old tree canopies in the field, between the summer and winter seasons, between the two experimental sites, and between the upper outer and lower outer canopy positions sampled. This indicates that delta(13)C measurements in the foliage materials are significantly influenced by the sampling techniques and environmental conditions. Significant differences in foliar delta(13)C, at the upper outer canopy in both field experiments in summer and winter, were detected between the clones, and between the female parents of the clones. Clone means of tree height at age ca. 3 years were positively related to those of the upper outer canopy delta(13)C at both experimental sites in winter, but only for the wetter site in summer. There were positive, linear relationships between clone means of canopy delta(13)C and those of canopy N-mass, indicating that canopy photosynthetic capacity might be an important factor regulating the clonal variation in canopy delta(13)C. Significant correlations were found between clone means of canopy delta(13)C at both experimental sites in summer and winter, and between those at the upper outer and lower outer canopy positions. Mean clone delta(13)C for the nursery hedges was only positively related to mean clone stem diameter at 1.3 m height at age 3 years on the wetter site. The clone by site interaction for foliar delta(13)C at the upper outer canopy was significant only in summer. Overall, the relatively high genetic variance components for foliar delta(13)C and significant, positive correlations between clone means of foliar delta(13)C and tree growth have highlighted the potential of using foliar delta(13)C measurements for assisting in selection of the elite F-1 hybrid pine clones with improved tree growth. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential significance and dimensions of genetic discrimination have been described extensively in published literature, but epidemiological and verified case data are limited. Obtaining unbiased data from individuals about discrimination which has been based on erroneous or unjustifiable assumptions about their genetic predispositions poses unique challenges. Through review and discussion of research literature, we identify methodological considerations for collecting valid epidemiological data on genetic discrimination from individuals in the community; in particular, we consider issues which relate to sampling, selection and response. We identify issues to promote sound study design, with particular attention to verification of genetic discrimination, and highlight the importance of clinical and genetic knowledge of complex genotype-phenotype relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictive testing is one of the new genetic technologies which, in conjunction with developing fields such as pharmacogenomics, promises many benefits for preventive and population health. Understanding how individuals appraise and make genetic test decisions is increasingly relevant as the technology expands. Lay understandings of genetic risk and test decision-making, located within holistic life frameworks including family or kin relationships, may vary considerably from clinical representations of these phenomena. The predictive test for Huntington's disease (HD), whilst specific to a single-gene, serious, mature-onset but currently untreatable disorder, is regarded as a model in this context. This paper reports upon a qualitative Australian study which investigated predictive test decision-making by individuals at risk for HD, the contexts of their decisions and the appraisals which underpinned them. In-depth interviews were conducted in Australia with 16 individuals at 50% risk for HD, with variation across testing decisions, gender, age and selected characteristics. Findings suggested predictive testing was regarded as a significant life decision with important implications for self and others, while the right not to know genetic status was staunchly and unanimously defended. Multiple contexts of reference were identified within which test decisions were located, including intra- and inter-personal frameworks, family history and experience of HID, and temporality. Participants used two main criteria in appraising test options: perceived value of, or need for the test information, for self and/or significant others, and degree to which such information could be tolerated and managed, short and long-term, by self and/or others. Selected moral and ethical considerations involved in decision-making are examined, as well as the clinical and socio-political contexts in which predictive testing is located. The paper argues that psychosocial vulnerabilities generated by the availability of testing technologies and exacerbated by policy imperatives towards individual responsibility and self-governance should be addressed at broader societal levels. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weather damage reduces the value of commercial mungbean, but hard-seededness can reduce the level of damage. However, attempts to breed large- and hard-seeded mungbean varieties have been unsuccessful. To understand the relationship between seed weight and hard-seededness, these traits were investigated using a quantitative trait loci (QTL) mapping approach with a recombinant inbred population derived from a cross between a completely soft-seeded variety and a completely hard-seeded genotype. The two parental genotypes also had a sixfold difference in seed weight. QTL analyses revealed four loci for hard-seededness and I I loci for seed weight. Two of the hardseededness loci co-localized with seed weight QTL. When seed weight was used as a covariate in the analysis of hard-seededness from the field data, two of the four hard-seeded QTL remained significant with the effect at one of these remaining unchanged. These results explain why retaining hard-seededness in large seeded mungbean lines has been unsuccessful. The existence of a persistent locus, however, indicated that breeding large and persistently hard-seeded varieties of mungbean may be possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the genetic and environmental relationships among 5 academic achievement skills of a standardized test of academic achievement, the Queensland Core Skills Test (QCST; Queensland Studies Authority, 2003a). QCST participants included 182 monozygotic pairs and 208 dizygotic pairs (mean 17 years +/- 0.4 standard deviation). IQ data were included in the analysis to correct for ascertainment bias. A genetic general factor explained virtually all genetic variance in the component academic skills scores, and accounted for 32% to 73% of their phenotypic variances. It also explained 56% and 42% of variation in Verbal IQ and Performance IQ respectively, suggesting that this factor is genetic g. Modest specific genetic effects were evident for achievement in mathematical problem solving and written expression. A single common factor adequately explained common environmental effects, which were also modest, and possibly due to assortative mating. The results suggest that general academic ability, derived from genetic influences and to a lesser extent common environmental influences, is the primary source of variation in component skills of the QCST.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New tools derived from advances in molecular biology have not been widely adopted in plant breeding because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. We explore whether a crop growth and development modelling framework can link phenotype complexity to underlying genetic systems in a way that strengthens molecular breeding strategies. We use gene-to-phenotype simulation studies on sorghum to consider the value to marker-assisted selection of intrinsically stable QTLs that might be generated by physiological dissection of complex traits. The consequences on grain yield of genetic variation in four key adaptive traits – phenology, osmotic adjustment, transpiration efficiency, and staygreen – were simulated for a diverse set of environments by placing the known extent of genetic variation in the context of the physiological determinants framework of a crop growth and development model. It was assumed that the three to five genes associated with each trait, had two alleles per locus acting in an additive manner. The effects on average simulated yield, generated by differing combinations of positive alleles for the traits incorporated, varied with environment type. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages with gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies. We simulated a marker-assisted selection (MAS) breeding strategy based on the analyses of gene effects. When marker scores were allocated based on the contribution of gene effects to yield in a single environment, there was a wide divergence in rate of yield gain over all environments with breeding cycle depending on the environment chosen for the QTL analysis. It was suggested that knowledge resulting from trait physiology and modelling would overcome this dependency by identifying stable QTLs. The improved predictive power would increase the utility of the QTLs in MAS. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate QTLs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138GMA, 561GMA, 708GMA) and two associated with ITPase deficiency (94CMA, IVS2+21AMC). Homozygotes for the 94CMA missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94CMA heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21AMC homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94CMA (allele frequency: 0.06), 24 were heterozygotes for IVS2+21AMC (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21AMC heterozygotes and 94CMA/IVS2+21AMC compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current genetic methods enable highly specific identification of DNA from modern fish bone. The applicability of these methods to the identification of archaeological fish bone was investigated through a study of a sample from late Holocene southeast Queensland sites. The resultant overall success rate of 2% indicates that DNA analysis is, as yet, not feasible for identifying fish bone from any given site. Taphonomic issues influencing the potential of genetic identification methods are raised and discussed in light of this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We recently evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach in delineating breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive, degenerative, neurological disease. The progressive disability associated with PD results in substantial burdens for those with the condition, their families and society in terms of increased health resource use, earnings loss of affected individuals and family caregivers, poorer quality of life, caregiver burden, disrupted family relationships, decreased social and leisure activities, and deteriorating emotional well-being. Currently, no cure is available and the efficacy of available treatments, such as medication and surgical interventions, decreases with longer duration of the disease. Whilst the cause of PD is unknown, genetic and environmental factors are believed to contribute to its aetiology. Descriptive and analytical epidemiological studies have been conducted in a number of countries in an effort to elucidate the cause, or causes, of PD. Rural residency, farming, well water consumption, pesticide exposure, metals and solvents have been implicated as potential risk factors for PD in some previous epidemiological studies. However, there is substantial disagreement between the results of existing studies. Therefore, the role of environmental exposures in the aetiology of PD remains unclear. The main component of this thesis consists of a case-control study that assessed the contribution of environmental exposures to the risk of developing PD. An existing, previously unanalysed, dataset from a local case-control study was analysed to inform the design of the new case-control study. The analysis results suggested that regular exposure to pesticides and head injury were important risk factors for PD. However, due to the substantial limitations of this existing study, further confirmation of these results was desirable with a more robustly designed epidemiological study. A new exposure measurement instrument (a structured interviewer-delivered questionnaire) was developed for the new case-control study to obtain data on demographic, lifestyle, environmental and medical factors. Prior to its use in the case-control study, the questionnaire was assessed for test-retest repeatability in a series of 32 PD cases and 29 healthy sex-, age- and residential suburb-matched electoral roll controls. High repeatability was demonstrated for lifestyle exposures, such as smoking and coffee/tea consumption (kappas 0.70-1.00). The majority of environmental exposures, including use of pesticides, solvents and exposure to metal dusts and fumes, also showed high repeatability (kappas >0.78). A consecutive series of 163 PD case participants was recruited from a neurology clinic in Brisbane. One hundred and fifty-one (151) control participants were randomly selected from the Australian Commonwealth Electoral Roll and individually matched to the PD cases on age (± 2 years), sex and current residential suburb. Participants ranged in age from 40-89 years (mean age 67 years). Exposure data were collected in face-to-face interviews. Odds ratios and 95% confidence intervals were calculated using conditional logistic regression for matched sets in SAS version 9.1. Consistent with previous studies, ever having been a regular smoker or coffee drinker was inversely associated with PD with dose-response relationships evident for packyears smoked and number of cups of coffee drunk per day. Passive smoking from ever having lived with a smoker or worked in a smoky workplace was also inversely related to PD. Ever having been a regular tea drinker was associated with decreased odds of PD. Hobby gardening was inversely associated with PD. However, use of fungicides in the home garden or occupationally was associated with increased odds of PD. Exposure to welding fumes, cleaning solvents, or thinners occupationally was associated with increased odds of PD. Ever having resided in a rural or remote area was inversely associated with PD. Ever having resided on a farm was only associated with moderately increased odds of PD. Whilst the current study’s results suggest that environmental exposures on their own are only modest contributors to overall PD risk, the possibility that interaction with genetic factors may additively or synergistically increase risk should be considered. The results of this research support the theory that PD has a multifactorial aetiology and that environmental exposures are some of a number of factors to contribute to PD risk. There was also evidence of interaction between some factors (eg smoking and welding) to moderate PD risk.