63 resultados para generalized Schwarz–Christoffel mapping
Resumo:
[1] We attempt to generate new solutions for the moisture content form of the one-dimensional Richards' [1931] equation using the Lisle [1992] equivalence mapping. This mapping is used as no more general set of transformations exists for mapping the one-dimensional Richards' equation into itself. Starting from a given solution, the mapping has the potential to generate an infinite number of new solutions for a series of nonlinear diffusivity and hydraulic conductivity functions. We first seek new analytical solutions satisfying Richards' equation subject to a constant flux surface boundary condition for a semi-infinite dry soil, starting with the Burgers model. The first iteration produces an existing solution, while subsequent iterations are shown to endlessly reproduce this same solution. Next, we briefly consider the problem of redistribution in a finite-length soil. In this case, Lisle's equivalence mapping is generalized to account for arbitrary initial conditions. As was the case for infiltration, however, it is found that new analytical solutions are not generated using the equivalence mapping, although existing solutions are recovered.
Resumo:
In this paper, it is shown that, for a wide range of risk-averse generalized expected utility preferences, independent risks are complementary, contrary to the results for expected utility preferences satisfying conditions such as proper and standard risk aversion.
Resumo:
The applicability of image calibration to like-values in mapping water quality parameters from multitemporal images is explored, Six sets of water samples were collected at satellite overpasses over Moreton Bay, Brisbane, Australia. Analysis of these samples reveals that waters in this shallow bay are mostly TSS-dominated, even though they are occasionally dominated by chlorophyll as well. Three of the images were calibrated to a reference image based on invariant targets. Predictive models constructed from the reference image were applied to estimating total suspended sediment (TSS) and Secchi depth from another image at a discrepancy of around 35 percent. Application of the predictive model for TSS concentration to another image acquired at a time of different water types resulted in a discrepancy of 152 percent. Therefore, image calibration to like-values could be used to reliably map certain water quality parameters from multitemporal TM images so long as the water type under study remains unchanged. This method is limited in that the mapped results could be rather inaccurate if the water type under study has changed considerably. Thus, the approach needs to be refined in shallow water from multitemporal satellite imagery.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
Objective: To assess from a health sector perspective the incremental cost-effectiveness of interventions for generalized anxiety disorder (cognitive behavioural therapy [CBT] and serotonin and noradrenaline reuptake inhibitors [SNRIs]) and panic disorder (CBT, selective serotonin reuptake inhibitors [SSRIs] and tricyclic antidepressants [TCAs]). Method: The health benefit is measured as a reduction in disability-adjusted life years (DALYs), based on effect size calculations from meta-analyses of randomised controlled trials. An assessment on second stage filters ('equity', 'strength of evidence', 'feasibility' and 'acceptability to stakeholders') is also undertaken to incorporate additional factors that impact on resource allocation decisions. Costs and benefits are calculated for a period of one year for the eligible population (prevalent cases of generalized anxiety disorder/panic disorder identified in the National Survey of Mental Health and Wellbeing, extrapolated to the Australian population in the year 2000 for those aged 18 years and older). Simulation modelling techniques are used to present 95% uncertainty intervals (UI) around the incremental cost-effectiveness ratios (ICERs). Results: Compared to current practice, CBT by a psychologist on a public salary is the most cost-effective intervention for both generalized anxiety disorder (A$6900/DALY saved; 95% UI A$4000 to A$12 000) and panic disorder (A$6800/DALY saved; 95% UI A$2900 to A$15 000). Cognitive behavioural therapy results in a greater total health benefit than the drug interventions for both anxiety disorders, although equity and feasibility concerns for CBT interventions are also greater. Conclusions: Cognitive behavioural therapy is the most effective and cost-effective intervention for generalized anxiety disorder and panic disorder. However, its implementation would require policy change to enable more widespread access to a sufficient number of trained therapists for the treatment of anxiety disorders.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
Progressive myoclonus epilepsy (PME) has a number of causes, of which Unverricht-Lundborg disease (ULD) is the most common. ULD has previously been mapped to a locus on chromosome 21 (EPM1). Subsequently, mutations in the cystatin B gene have been found in most cases. In the present work we identified an inbred Arab family with a clinical pattern compatible with ULD, but mutations in the cystatin B gene were absent. We sought to characterize the clinical and molecular features of the disorder. The family was studied by multiple field trips to their town to clarify details of the complex consanguineous relationships and to personally examine the family. DNA was collected for subsequent molecular analyses from 21 individuals. A genome-wide screen was performed using 811 microsatellite markers. Homozygosity mapping was used to identify loci of interest. There were eight affected individuals. Clinical onset was at 7.3 +/- 1.5 years with myoclonic or tonic-clonic seizures. All had myoclonus that progressed in severity over time and seven had tonic-clonic seizures. Ataxia, in addition to myoclonus, occurred in all. Detailed cognitive assessment was not possible, but there was no significant progressive dementia. There was intrafamily variation in severity; three required wheelchairs in adult life; the others could walk unaided. MRI, muscle and skin biopsies on one individual were unremarkable. We mapped the family to a 15-megabase region at the pericentromeric region of chromosome 12 with a maximum lod score of 6.32. Although the phenotype of individual subjects was typical of ULD, the mean age of onset (7.3 years versus 11 years for ULD) was younger. The locus on chromosome 12 does not contain genes for any other form of PME, nor does it have genes known to be related to cystatin B. This represents a new form of PME and we have designated the locus as EPM1B.