147 resultados para general-interest magazine
Resumo:
The most recent National Health Survey reports that more than 80% of women initiate breastfeeding, while recent studies describe initiation rates of more than 90%. Yet fewer than 50% of women continue to breastfeed for 6 months or longer. This is at odds with National Health and Medical Research Council recommendations that 80% of infants be exclusively breastfed for the first 6 months of life. Women are more likely to initiate and continue to breastfeed if their doctor supports and encourages them to do so. Conversely, women perceive a neutral attitude by doctors toward breastfeeding to be similar to a negative attitude. Therefore, while doctors may not perceive their support or encouragement to be a determining factor in a woman’s breastfeeding decisions, women often place great emphasis on their GP's attitude to breastfeeding and are much more likely to think that information provided by a doctor is important. No previous research in Australia has addressed the issue of how GPs perceive their roles and responsibilities regarding breastfeeding. As part of a larger research project investigating the breastfeeding skills and knowledge of general practice registrars, this article reports the results of qualitative interviews with eight general practice registrars and their views and beliefs about GPs’ responsibilities to breastfeeding women.
Resumo:
In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.
Resumo:
The second edition of An Introduction to Efficiency and Productivity Analysis is designed to be a general introduction for those who wish to study efficiency and productivity analysis. The book provides an accessible, well-written introduction to the four principal methods involved: econometric estimation of average response models; index numbers, data envelopment analysis (DEA); and stochastic frontier analysis (SFA). For each method, a detailed introduction to the basic concepts is presented, numerical examples are provided, and some of the more important extensions to the basic methods are discussed. Of special interest is the systematic use of detailed empirical applications using real-world data throughout the book. In recent years, there have been a number of excellent advance-level books published on performance measurement. This book, however, is the first systematic survey of performance measurement with the express purpose of introducing the field to a wide audience of students, researchers, and practitioners. Indeed, the 2nd Edition maintains its uniqueness: (1) It is a well-written introduction to the field. (2) It outlines, discusses and compares the four principal methods for efficiency and productivity analysis in a well-motivated presentation. (3) It provides detailed advice on computer programs that can be used to implement these performance measurement methods. The book contains computer instructions and output listings for the SHAZAM, LIMDEP, TFPIP, DEAP and FRONTIER computer programs. More extensive listings of data and computer instruction files are available on the book's website: (www.uq.edu.au/economics/cepa/crob2005).
Resumo:
This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.
Resumo:
Objective: To determine women's satisfaction with general practice services. Design: Cross-sectional postal questionnaire conducted during April to September 1996 (part of the baseline survey of the Australian Longitudinal Study on Women's Health). Participants: Women aged 18-22 (n=14739), 45-49 (n=14013) and 70-74 (n=12941) years, randomly selected from the Medicare database, with oversampling of women from rural and remote areas. Main outcome measures: Frequency of use of general practice services; satisfaction with the most recent visit to a general practitioner (CP), prevalence of selected symptoms; preference for a female doctor. Results: The most recent visit to a GP was rated overall as good, very good or excellent by more than 80% of women, with increasing levels of satisfaction with increasing age of the women. However, satisfaction was lower for waiting room time and cost of the visit. A third of the young and middle-aged women living in rural and remote areas were dissatisfied with the cost of the visit. Young women were more likely to prefer a female doctor, and many were dissatisfied with their GP's skills at explaining their problem and giving them a chance to give an opinion and ask questions. The most prevalent symptoms for all women included headaches and tiredness, and many were not satisfied with the health services available to help them deal with these symptoms. Conclusions: Australian women have high levels of satisfaction with GP consultations. However, more effective strategies may be needed to improve communication with younger women, and there is an unmet need for services to help all women deal with some common symptoms. Dissatisfaction with cost of services and women's preference for female doctors have implications for future health policy.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Squeezed light is of interest as an example of a non-classical state of the electromagnetic field and because of its applications both in technology and in fundamental quantum physics. This review concentrates on one aspect of squeezed light, namely its application in atomic spectroscopy. The general properties, detection and application of squeezed light are first reviewed. The basic features of the main theoretical methods (master equations, quantum Langevin equations, coupled systems) used to treat squeezed light spectroscopy are then outlined. The physics of squeezed light interactions with atomic systems is dealt with first for the simpler case of two-level atoms and then for the more complex situation of multi-level atoms and multi-atom systems. Finally the specific applications of squeezed light spectroscopy are reviewed.