69 resultados para excess phosphorus
Resumo:
Motivated by applications to quantum computer architectures we study the change in the exchange interaction between neighbouring phosphorus donor electrons in silicon due to the application of voltage biases to surface control electrodes. These voltage biases create electro-static fields within the crystal substrate, perturbing the states of the donor electrons and thus altering the strength of the exchange interaction between them. We find that control gates of this kind can be used to either enhance or reduce the strength of the interaction, by an amount that depends both on the magnitude and orientation of the donor separation.
Resumo:
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N-2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen.-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.
Resumo:
An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis,' a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA. A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Significant acetylene reduction and therefore N-2 fixation was observed for Lyngbya majuscula only during dark periods, which suggests that oxygenic photosynthesis and N-2 fixation are incompatible processes for this species. Results from a series of batch and continuous-flow-culture reactor studies showed that the specific growth rate and N-2 fixation rate of L, majuscula increased with phosphate (P-PO4) concentration up to a maximum value and thereafter remained constant. The P-PO4 concentrations corresponding to the maximum N-2 fixation and maximum growth rates were -0.27 and -0.18 muM respectively and these values are denoted as the saturation values for N-2 fixation and growth respectively. Regular monitoring studies in Moreton Bay, Queensland, show that concentrations Of P-PO4 generally exceed these saturation values over a large portion of the Bay and therefore, the growth of the bloom-forming L, majuscula is potentially maximised throughout much of the Bay by the elevated P-PO4 concentrations. Results from other studies suggest that the elevated P-PO4 concentrations in the Bay can be largely attributed to discharges from waste-water treatment plants (WWTPs), and thus it is proposed that the control of the growth of L. majuscula in Moreton Bay will require a significant reduction in the P load from the WWTP discharges. If the current strategy of N load reduction for these discharges is maintained in the absence of substantial P load reduction, it is hypothesised that the growth of L, majuscula and other diazotrophs in Moreton Bay will increase in the future.
Resumo:
Large blooms of the marine cyanobacterium Lyngbya majuscula in Moreton Bay, Australia (27 degrees 05'S, 153 degrees 08'E) have been re-occurring for several years. A bloom was studied in Deception Bay (Northern Moreton Bay) in detail over the period January-March 2000. In situ data loggers and field sampling characterised various environmental parameters before and during the L. majuscula bloom. Various ecophysiological experiments were conducted on L. majuscula collected in the field and transported to the laboratory, including short-term (2h) C-14 incorporation rates and long-term (7 days) pulse amplitude modulated (PAM) fluorometry assessments of photosynthetic capacity. The effects of L. majuscula on various seagrasses in the bloom region were also assessed with repeated biomass sampling. The bloom commenced in January 2000 following usual December rainfall events, water temperatures in excess of 24 degrees C and high light conditions. This bloom expanded rapidly from 0 to a maximum extent of 8 km(2) over 55 days with an average biomass of 210 g(dw)(-1) m(-2) in late February, followed by a rapid decline in early April. Seagrass biomass, especially Syringodium isoetifolium, was found to decline in areas of dense L. majuscula accumulation. Dissolved and total nutrient concentrations did not differ significantly (P > 0.05) preceding or during the bloom. However, water samples from creeks discharging into the study region indicated elevated concentrations of total iron (2.7-80.6 mu M) and dissolved organic carbon (2.5-24.7 mg L-1), associated with low pH values (3.8-6.7). C-14 incorporation rates by L. majuscula were significantly (P < 0.05) elevated by additions of iron (5 mu M Fe), an organic chelator, ethylenediaminetetra-acetic acid (5 mu M EDTA) and phosphorus (5 mu M PO4-3). Photosynthetic capacity measured with PAM fluorometry was also stimulated by various nutrient additions, but not significantly (P > 0.05). These results suggest that the L. majuscula bloom may have been stimulated by bioavailable iron, perhaps complexed by dissolved organic carbon. The rapid bloom expansion observed may then have been sustained by additional inputs of nutrients (N and P) and iron through sediment efflux, stimulated by redox changes due to decomposing L. majuscula mats. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Many studies have shown a reduction in P sorption in highly weathered soils when organic matter (OM) is applied, suggesting competition between OM decomposition products and P for sorption sites. However, such studies seldom consider the P released from the added OM. To delineate the effects of OM addition on P availability through sorption competition and P addition, water leachate from incubated soybean (SB) [Glycine mar (L.) Merr.] and Rhodes grass (RG) (Chloris gayana Knuth cv. Callide) was used in competitive P sorption studies both undiluted and after acidification (i.e., the fulvic acid [FA] component). Addition of two rates (0.2 and 2 mL) of SB leachate to an Oxisol significantly increased P sorption at the higher rate, while a similar trend was observed following RG leachate addition at the same rates. Extending the range of highly weathered soils examined (two Oxisols, an Ultisol, and an acidic Vertisol) resulted in no observed decrease in P sorption following addition of OM leachate. Surprisingly, SB leachate transiently increased P sorption in the two Oxisol soils. Addition of the FA component of the leachates resulted in a transient (< 6 d) decrease in P sorption in three of the four soils examined and constituted the only evidence in this study that decomposing OM residues reduced P sorption. This research provides further evidence contradicting the long held assumption that inhibition of P sorption by dissolved organic compounds, derived from decomposing OM, is responsible for increased P phytoavailability when P fertilizer and OM are applied together.
Resumo:
The aim of this paper was to summarise the reported excess in coronary events on Mondays, and examine the evidence for three competing explanations: stress, alcohol consumption, or registration errors. A review of the literature found 28 studies covering 16 countries and over 1.6 million coronary events. The overall Monday excess was small; in a population experiencing 100 coronary events per week there was one more event on Monday than other days. The excess was larger in men and in studies including sudden cardiac death or cardiac arrests. In a prospective study an increase in events on Mondays was associated with greater alcohol consumption, lower rainfall, and the month of January. The excess in coronary events on Mondays is a persistent phenomenon. The size of the effect varies widely between populations. There is some evidence of an association with alcohol consumption, but a definitive explanation remains elusive and is likely to remain so because of the smallness of the effect and the paucity of high quality data.
Resumo:
The incorporation of organic matter ( OM) in soils that are able to rapidly sorb applied phosphorus ( P) fertiliser reportedly increases P availability to plants. This effect has commonly been ascribed to competition between the decomposition products of OM and P for soil sorption sites resulting in increased soil solution P concentrations. The evidence for competitive inhibition of P sorption by dissolved organic carbon compounds, derived from the breakdown of OM, includes studies on the competition between P and (i) low molecular weight organic acids (LOAs), (ii) humic and fulvic acids, and (iii) OM leachates in soils with a high P sorption capacity. These studies, however, have often used LOAs at 1 - 100 mM, concentrations much higher than those in soils ( generally < 0.05 mM). The transience of LOAs in biologically active soils further suggests that neither their concentration nor their persistence would have a practical benefit in increasing P phytoavailability. Higher molecular weight compounds such as humic and fulvic acids also competitively inhibit P sorption; however, little consideration has been given to the potential of these compounds to increase the amount of P sorbed through metal - chelate linkages. We suggest that the magnitude of the inhibition of P sorption by the decomposition products of OM leachate is negligible at rates equivalent to those of OM applied in the field. Incubation of OM in soil has also commonly been reported as reducing P sorption in soil. However, we consider that the reported decreases in P sorption ( as measured by P in the soil solution) are not related to competition from the decomposition products of OM breakdown, but are the result of P release from the OM that was not accounted for when calculating the reduction in P sorption.
Resumo:
The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO3- accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane ( Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores ( Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities ( 0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments ( 0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mg P/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap ( TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-termcane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.
Resumo:
Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase ( eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide ( NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral ( U) or bilateral ( B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor ( EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance ( RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 mu M furosemide. Autoregulation was enhanced by N-omega-nitro-L-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.
Resumo:
Enhanced biological phosphorus removal (EBPR) has been used at many wastewater treatment plants all over the world for many years. In this study a full-scale sludge with good EBPR was tested with P-release batch tests and combined FISH/MAR (fluorescence in situ hybridisation and microautoradiography). Proposed models of PAOs and GAOs (polyphosphate- and glycogen-accumulating organisms) and microbial methods suggested from studies of laboratory reactors were found to be applicable also on sludge from full-scale plants. Dependency of pH and the uptake of both acetate and propionate were studied and used for calculations for verifying the models and results from microbial methods. All rates found from the batch tests with acetate were higher than in the batch tests with propionate, which was explained by the finding that only those parts of the bacterial community that were able to take up acetate anaerobically were able to take up propionate anaerobically.