43 resultados para ellipsoidal thermal lens
Resumo:
Dormancy release in seeds of Lolium rigidum Gaud. (annual ryegrass) was investigated in relation to temperature and seed water content. Freshly matured seeds were collected from cropping fields at Wongan Hills and Merredin, Western Australia. Seeds from Wongan Hills were equilibrated to water contents between 6 and 18% dry weight and after-ripened at constant temperatures between 9 and 50degreesC for up to 23 weeks. Wongan Hills and Merredin seeds at water contents between 7 and 17% were also after-ripened in full sun or shade conditions. Dormancy was tested at regular intervals during after-ripening by germinating seeds on agar at 12-h alternating 15degreesC (dark) and 25degreesC (light) periods. Rate of dormancy release for Wongan Hills seeds was a positive linear function of after-ripening temperature above a base temperature (T-b) of 5.4degreesC. A thermal after-ripening time model for dormancy loss accounting for seed moisture in the range 6-18% was developed using germination data for Wongan Hills seeds after-ripened at constant temperatures. The model accurately predicted dormancy release for Wongan Hills seeds after-ripened under naturally fluctuating temperatures. Seeds from Merredin responded similarly but had lower dormancy at collection and a faster rate of dormancy release in seeds below 9% water content.
Resumo:
An equivalent algorithm is proposed to simulate thermal effects of the magma intrusion in geological systems, which are composed of porous rocks. Based on the physical and mathematical equivalence, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with a physically equivalent heat source. From the analysis of an ideal solidification model, the physically equivalent heat source has been determined in this paper. The major advantage in using the proposed equivalent algorithm is that the fixed finite element mesh with a variable integration time step can be employed to simulate the thermal effect of the intruded magma solidification using the conventional finite element method. The related numerical results have demonstrated the correctness and usefulness of the proposed equivalent algorithm for simulating the thermal effect of the intruded magma solidification in geological systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Dormancy release was studied in four populations of annual ryegrass (Lolium rigidum) seeds to determine whether loss of dormancy in the field can be predicted from temperature alone or whether seed water content (WC) must also be considered. Freshly matured seeds were after-ripened at the northern and southern extremes of the Western Australian cereal cropping region and at constant 37degreesC. Seed WC was allowed to fluctuate with prevailing humidity, but full hydration was avoided by excluding rainfall. Dormancy was measured regularly during after-ripening by germinating seeds with 12-hourly light or in darkness. Germination was lower in darkness than in light/dark and dormancy release was slower when germination was tested in darkness. Seeds were consistently drier, and dormancy release was slower, during after-ripening at 37degreesC than under field conditions. However, within each population, the rate of dormancy release in the field (north and south) in terms of thermal time was unaffected by after-ripening site. While low seed WC slowed dormancy release in seeds held at 37degreesC, dormancy release in seeds after-ripened under Western Australian field conditions was adequately described by thermal after-ripening time, without the need to account for changes in WC elicited by fluctuating environmental humidity.
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
Molecular dynamics simulations are used to study the interaction of low-energy Ar atoms with the Ni(001) surface, Angular scattering distributions, in and out of the plane of incidence, are investigated as a function of incident energy, angles of incidence, crystallographic orientation of the incident beam and surface temperature. The results show a clear transition to the structure scattering regime at around 2 eV. However, at lower energies, two sub-regimes are revealed by the simulations, Far energies up to 250 meV, scattering is mainly diffuse, and significant trapping on the surface is observed, At energies above this level, lobular patterns start to form and trapping decreases with the increase in energy, Generally, there is a weak temperature dependence, but variations in the angle of incidence and/or changes in the crystallographic direction, generate significant changes in the scattering patterns.
Resumo:
Molecular dynamics simulations are used to study energy and momentum transfer of low-energy Ar atoms scattered from the Ni(001) surface. The investigation concentrates on the dependence of these processes on incident energy, angles of incidence and surface temperature. Energy transfer exhibits a strong dependence on the surface temperature, at incident energies below 500 meV, and incident angles close to specular incidence. Above 500 meV, the surface temperature dependence vanishes, and a limiting value in the amount of energy transferred to the surface is attained. Momentum exchange is investigated in terms of tangential and normal components. Both components exhibit a weak surface temperature dependence, but they have opposite behaviours at all incidence angles. In each component, momentum can be lost or gained following the interaction with the surface. (C) 1997 Elsevier Science B.V.
Resumo:
Mass spectrometric U-series dating of speleothems from Tangshan Cave, combined with ecological and paleoclimatic evidence, indicates that Nanjing Man, a typical Homo erectus morphologically correlated with Peking Man at Zhoukoudian, should be at least 580 k.y. old, or more likely lived during the glacial oxygen isotope stage 16 (similar to 620 ka). Such an age estimate, which is similar to 270 ka older than previous electron spin resonance and alpha counting U-series dates, has significant implications for the evolution of Asian H. erectus. Dentine and enamel samples from the coexisting fossil layer yield significantly younger apparent ages, that of the enamel sample being only less than one-fourth of the minimum age of Nanjing Man. This suggests that U uptake history is far more complex than existing models can handle. As a result, great care must be taken in the interpretation of electron spin resonance and U-series dates of fossil teeth.
Resumo:
This study examines whether dissimilarity among employees that is based on their work status (i.e., whether they are temporary or internal workers) influences their organization-based self-esteem, their trust in and attraction toward their peers, and their altruism. A model that is based on social identity theory posits that work-status dissimilarity negatively influences each outcome variable and that the strength of this relationship varies depending on whether employees have temporary or internal status and the composition of their work groups. Results that are based on a survey of 326 employees (189 internal and 137 temporary) from 34 work groups, belonging to 2 organizations, indicate that work-status dissimilarity has a systematic negative effect only on outcomes related to internal workers when they work in temporary-worker-dominated groups.
Resumo:
The microwave and thermal cure processes for the epoxy-amine systems N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl methane (TGDDM) with diaminodiphenyl sulfone (DDS) and diaminodiphenyl methane (DDM) have been investigated. The DDS system was studied at a single cure temperature of 433 K and a single stoichiometry of 27 wt% and the DDM system was studied at two stoichiometries, 19 and 32 wt%, and a range temperatures between 373 and 413 K. The best values the kinetic rate parameters for the consumption of amines have been determined by a least squares curve Ft to a model for epoxy-amine cure. The activation energies for the rate parameters for the MY721/DDM system were determined as was the overall activation energy for the cure reaction which was found to be 62 kJ mol(-1). No evidence was found for any specific effect of the microwave radiation on the rate parameters, and the systems were both found to be characterized by a negative substitution effect. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The Australian Coal Industry Research Laboratory (ACIRL) furnace is scaled to simulate slagging and fouling in operating boilers. This requires that the gas and target temperatures, the heat flux, and the flow pattern be the same as those in real boilers. The gas and target temperatures are maintained by insulating the wall and cooling the target respectively. The flow pattern of a small burner cannot be the same as a large furnace. However, this flow pattern is partially compensated for by placing the slagging panels in three vertical locations. The paper develops the models of radiant heat transfer from the flame to the deposits both in pilot-scale and full-scale furnaces. They are used to compare the effective radiant heat transfer of the pilot- and full-scale furnaces. The experimental data both from the pilot- and full-scale furnaces are used to verify the incident heat flux and temperature profiles in the pilot- and full-scale furnaces. The results showed that the thermal condition in the pilot-scale furnace meets the requirements for studying the slagging regarding the gas temperature and the incident heat flux, particularly for the panel #1. The gas temperature in the convective section also meets the requirement for studying the fouling.