46 resultados para dynamical scaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scaling of decoherence rates with qubit number N is studied for a simple model of a quantum computer in the situation where N is large. The two state qubits are localized around well-separated positions via trapping potentials and vibrational centre of mass motion of the qubits occurs. Coherent one and two qubit gating processes are controlled by external classical fields and facilitated by a cavity mode ancilla. Decoherence due to qubit coupling to a bath of spontaneous modes, cavity decay modes and to the vibrational modes is treated. A non-Markovian treatment of the short time behaviour of the fidelity is presented, and expressions for the characteristic decoherence time scales obtained for the case where the qubit/cavity mode ancilla is in a pure state and the baths are in thermal states. Specific results are given for the case where the cavity mode is in the vacuum state and gating processes are absent and the qubits are in (a) the Hadamard state (b) the GHZ state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral density, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-neighbor Coulomb repulsion, V, to the hopping integral, t, increases there is a transition from a metallic phase to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calculations. As V is increased the charge correlation function displays a collective mode which, for wave vectors close to (pi,pi), increases in amplitude and softens as the charge-ordering transition is approached. We propose that inelastic x-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with d(xy) symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to the charge-ordering transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the European lesser-spotted dogfish Scyliorhinus canicula, rectal gland mass in mg (M-Rg) followed the allometric relationship: M-Rg = 1.15 M-0.68, where M is body mass (g). The concept of allometric scaling is an important consideration in studies investigating the function Of osmoregulatory organs. (C) 2003 the Fisheries Society of the British Isles.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that interesting multigate circuits can be constructed using a postselected controlled-sign gate that works with a probability (1/3)(n), where n-1 is the number of controlled-sign gates in the circuit, rather than (1/9)(n-1), as would be expected from a sequence of such gates. We suggest some quantum information tasks which could be demonstrated using these circuits, such as parity checking and cluster-state computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical tunneling is a quantum phenomenon where a classically forbidden process occurs that is prohibited not by energy but by another constant of motion. The phenomenon of dynamical tunneling has been recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments using numerical solutions of the three-dimensional Gross-Pitaevskii equation and the corresponding Floquet theory. We explore the parameter dependency of the tunneling oscillations and we move the quantum system towards the classical limit in the experimentally accessible regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, very massive compact stellar systems have been discovered in the intracluster regions of galaxy clusters and in the nuclear regions of late-type disk galaxies. It is unclear how these compact stellar systems - known as ultracompact dwarf (UCD) galaxies or nuclear clusters (NCs) - form and evolve. By adopting a formation scenario in which these stellar systems are the product of multiple merging of star clusters in the central regions of galaxies, we investigate, numerically, their physical properties. We find that physical correlations among velocity dispersion, luminosity, effective radius, and average surface brightness in the stellar merger remnants are quite different from those observed in globular clusters. We also find that the remnants have triaxial shapes with or without figure rotation, and these shapes and their kinematics depend strongly on the initial number and distribution of the progenitor clusters. These specific predictions can be compared with the corresponding results of ongoing and future observations of UCDs and NCs, thereby providing a better understanding of the origin of these enigmatic objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For two two-level atoms coupled to a single Bosonic mode that is driven and heavily damped, the steady state can be entangled by resonantly driving the system [S. Schneider and G. J. Milburn, Phys. Rev. A 65, 042107 (2002)]. We present a scheme to significantly increase the steady-state entanglement by using homodyne-mediated feedback, in which the Bosonic mode is that of an electromagnetic cavity, the output of which is measured and the resulting homodyne photocurrent is used to modulate the field driving the qubits. Such feedback can increase the nonlinear response to both the decoherence process of the two-qubit system and the coherent evolution of individual qubits. We present the properties of the entangled states using the SO(3) Q function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Patient discomfort is one reason for poor compliance with supportive periodontal therapy (SPT). The aim of this study was to compare the levels of discomfort during SPT, using the Vector (TM) system and treatment with a conventional ultrasonic scaler. Methods: Forty-six patients with an SPT programme were debrided using both the Vector (TM) system and a conventional piezo-electric scaler (Sirona (TM)) in a split mouth design. A visual analogue scale was used to evaluate of pain scores upon completion of treatment. A verbal response scale(VRS) was used to assess discomfort, vibration and noise associated with the scaling system, as well as the volume and taste of the coolant used by these systems. Results: Patients instrumented with the Vector (TM) system experienced approximately half the amount of pain compared with the conventional ultrasonic scaling system. The VRS showed that the Vector (TM) system caused less discomfort than the conventional ultrasonic scaling system when assessed for pain, vibration, noise and volume of coolant. These findings were all statistically significant. There was, however, no statistically significant difference between the two systems when assessed for taste. Conclusion: During SPT the Vector (TM) system caused reduced discomforting sensations compared with conventional methods and may be useful in improving compliance with SPT programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite decades of experimental and theoretical investigation on thin films, considerable uncertainty exists in the prediction of their critical rupture thickness. According to the spontaneous rupture mechanism, common thin films become unstable when capillary waves. at the interfaces begin to grow. In a horizontal film with symmetry at the midplane. unstable waves from adjacent interfaces grow towards the center of the film. As the film drains and becomes thinner, unstable waves osculate and cause the film to rupture, Uncertainty sterns from a number of sources including the theories used to predict film drainage and corrugation growth dynamics. In the early studies, (lie linear stability of small amplitude waves was investigated in the Context of the quasi-static approximation in which the dynamics of wave growth and film thinning are separated. The zeroth order wave growth equation of Vrij predicts faster wave growth rates than the first order equation derived by Sharma and Ruckenstein. It has been demonstrated in an accompanying paper that film drainage rates and times measured by numerous investigations are bounded by the predictions of the Reynolds equation and the more recent theory of Manev, Tsekov, and Radoev. Solutions to combinations of these equations yield simple scaling laws which should bound the critical rupture thickness of foam and emulsion films, In this paper, critical thickness measurements reported in the literature are compared to predictions from the bounding scaling equations and it is shown that the retarded Hamaker constants derived from approximate Lifshitz theory underestimate the critical thickness of foam and emulsion films, The non-retarded Hamaker constant more adequately bounds the critical thickness measurements over the entire range of film radii reported in the literature. This result reinforces observations made by other independent researchers that interfacial interactions in flexible liquid films are not adequately represented by the retarded Hamaker constant obtained from Lifshitz theory and that the interactions become significant at much greater separations than previously thought. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hysteresis models that eliminate the artificial pumping errors associated with the Kool-Parker (KP) soil moisture hysteresis model, such as the Parker-Lenhard (PL) method, can be computationally demanding in unsaturated transport models since they need to retain the wetting-drying history of the system. The pumping errors in these models need to be eliminated for correct simulation of cyclical systems (e.g. transport above a tidally forced watertable, infiltration and redistribution under periodic irrigation) if the soils exhibit significant hysteresis. A modification is made here to the PL method that allows it to be more readily applied to numerical models by eliminating the need to store a large number of soil moisture reversal points. The modified-PL method largely eliminates any artificial pumping error and so essentially retains the accuracy of the original PL approach. The modified-PL method is implemented in HYDRUS-1D (version 2.0), which is then used to simulate cyclic capillary fringe dynamics to show the influence of removing artificial pumping errors and to demonstrate the ease of implementation. Artificial pumping errors are shown to be significant for the soils and system characteristics used here in numerical experiments of transport above a fluctuating watertable. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide here a detailed theoretical explanation of the floating molecule or levitation effect, for molecules diffusing through nanopores, using the oscillator model theory (Phys. Rev. Lett. 2003, 91, 126102) recently developed in this laboratory. It is shown that on reduction of pore size the effect occurs due to decrease in frequency of wall collision of diffusing particles at a critical pore size. This effect is, however, absent at high temperatures where the ratio of kinetic energy to the solid-fluid interaction strength is sufficiently large. It is shown that the transport diffusivities scale with this ratio. Scaling of transport diffusivities with respect to mass is also observed, even in the presence of interactions.