20 resultados para drilling muds
Resumo:
The cost and risk associated with mineral exploration in Australia increases significantly as companies move into deeper regolith-covered terrain. The ability to map the bedrock and the depth of weathering within an area has the potential to decrease this risk and increase the effectiveness of exploration programs. This paper is the second in a trilogy concerning the Grant's Patch area of the Eastern Goldfields. The recent development of the VPmg potential field inversion program in conjunction with the acquisition of high-resolution gravity data over an area with extensive drilling provided an opportunity to evaluate three-dimensional gravity inversion as a bedrock and regolith mapping tool. An apparent density model of the study area was constructed, with the ground represented as adjoining 200 m by 200 m vertical rectangular prisms. During inversion VPmg incrementally adjusted the density of each prism until the free-air gravity response of the model replicated the observed data. For the Grant's Patch study area, this image of the apparent density values proved easier to interpret than the Bouguer gravity image. A regolith layer was introduced into the model and realistic fresh-rock densities assigned to each basement prism according to its interpreted lithology. With the basement and regolith densities fixed, the VPmg inversion algorithm adjusted the depth to fresh basement until the misfit between the calculated and observed gravity response was minimised. The resulting geometry of the bedrock/regolith contact largely replicated the base of weathering indicated by drilling with predicted depth of weathering values from gravity inversion typically within 15% of those logged during RAB and RC drilling.
Resumo:
Pasminco Century Mine has developed a geophysical logging system to provide new data for ore mining/grade control and the generation of Short Term Models for mine planning. Previous work indicated the applicability of petrophysical logging for lithology prediction, however, the automation of the method was not considered reliable enough for the development of a mining model. A test survey was undertaken using two diamond drilled control holes and eight percussion holes. All holes were logged with natural gamma, magnetic susceptibility and density. Calibration of the LogTrans auto-interpretation software using only natural gamma and magnetic susceptibility indicated that both lithology and stratigraphy could be predicted. Development of a capability to enforce stratigraphic order within LogTrans increased the reliability and accuracy of interpretations. After the completion of a feasibility program, Century Mine has invested in a dedicated logging vehicle to log blast holes as well as for use in in-fill drilling programs. Future refinement of the system may lead to the development of GPS controlled excavators for mining ore.
Resumo:
This paper reports on the fate of nitrogen (N) in a first ratoon sugarcane (Saccharum officinarum L.) crop in the wet tropics of Queensland when urea was either surface applied or drilled into the soil 3-4 days after harvesting the plant cane. Ammonia volatilization was measured with a micrometeorological method, and fertilizer N recovery in plants and soil, to a depth of 140 cm, was determined by mass balance in macroplots with N labelled urea 166 and 334 days after fertilizer application. The bulk of the fertilizer and soil N uptake by the sugarcane occurred between fertilizing and the first sampling on day 166. Nitrogen use efficiency measured as the recovery of labelled N in the plant was very low. At the time of the final sampling (day 334), the efficiencies for the surface and subsurface treatments were 18.9% and 28.8%, respectively. The tops, leaves, stalks and roots in the subsurface treatment contained significantly more fertilizer N than the corresponding parts in the surface treatment. The total recoveries of fertilizer N for the plant-trash-soil system on day 334 indicate significant losses of N in both treatments ( 59.1% and 45.6% of the applied N in the surface and subsurface treatments, respectively). Drilling the urea into the soil instead of applying it to the trash surface reduced ammonia loss from 37.3% to 5.5% of the applied N. Subtracting the data for ammonia loss from total loss suggests that losses by leaching and denitrification combined increased from 21.8% and 40.1% of the applied N as a result of the change in method of application. While the treatment resulted in increased denitrification and/or leaching loss, total N loss was reduced from 59.1% to 45.6%, ( a saving of 13.5% of the applied N), which resulted in an extra 9.9% of the applied N being assimilated by the crop.
Resumo:
Blasting has been the most frequently used method for rock breakage since black powder was first used to fragment rocks, more than two hundred years ago. This paper is an attempt to reassess standard design techniques used in blasting by providing an alternative approach to blast design. The new approach has been termed asymmetric blasting. Based on providing real time rock recognition through the capacity of measurement while drilling (MWD) techniques, asymmetric blasting is an approach to deal with rock properties as they occur in nature, i.e., randomly and asymmetrically spatially distributed. It is well accepted that performance of basic mining operations, such as excavation and crushing rely on a broken rock mass which has been pre conditioned by the blast. By pre-conditioned we mean well fragmented, sufficiently loose and with adequate muckpile profile. These muckpile characteristics affect loading and hauling [1]. The influence of blasting does not end there. Under the Mine to Mill paradigm, blasting has a significant leverage on downstream operations such as crushing and milling. There is a body of evidence that blasting affects mineral liberation [2]. Thus, the importance of blasting has increased from simply fragmenting and loosing the rock mass, to a broader role that encompasses many aspects of mining, which affects the cost of the end product. A new approach is proposed in this paper which facilitates this trend 'to treat non-homogeneous media (rock mass) in a non-homogeneous manner (an asymmetrical pattern) in order to achieve an optimal result (in terms of muckpile size distribution).' It is postulated there are no logical reasons (besides the current lack of means to infer rock mass properties in the blind zones of the bench and onsite precedents) for drilling a regular blast pattern over a rock mass that is inherently heterogeneous. Real and theoretical examples of such a method are presented.
Resumo:
Based on the refined non-conforming element method for geometric nonlinear analysis, a refined nonlinear non-conforming triangular plate element is constructed using the Total Lagrangian (T.L.) and the Updated Lagrangian (U.L.) approach. The refined nonlinear non-conforming triangular plate element is based on the Allman's triangular plane element with drilling degrees of freedom [1] and the refined non-conforming triangular plate element RT9 [2]. The element is used to analyze the geometric nonlinear behavior of plates and the numerical examples show that the refined non-conforming triangular plate element by the T.L. and U.L. approach can give satisfactory results. The computed results obtained from the T.L. and U.L. approach for the same numerical examples are somewhat different and the reasons for the difference of the computed results are given in detail in this paper. © 2003 Elsevier Science Ltd. All rights reserved.