17 resultados para domain-specific expertise
Resumo:
Adiponectin is a secreted, multimeric protein with insulin-sensitizing, antiatherogenic, and antiinflammatory properties. Serum adiponectin consists of trimer, hexamer, and larger high-molecular-weight (HMW) multimers, and these HMW multimers appear to be the more bioactive forms. Multimer composition of adiponectin appears to be regulated; however, the molecular mechanisms involved are unknown. We hypothesize that regulation of adiponectin multimerization and secretion occurs via changes in posttranslational modifications (PTMs). Although a structural role for intertrimer disulfide bonds in the formation of hexamers and HMW multimers is established, the role of other PTMs is unknown. PTMs identified in murine and bovine adiponectin include hydroxylation of multiple conserved proline and lysine residues and glycosylation of hydroxylysines. By mass spectrometry, we confirmed the presence of these PTMs in human adiponectin and identified three additional hydroxylations on Pro71, Pro76, and Pro95. We also investigated the role of the five modified lysines in multimer formation and secretion of recombinant human adiponectin expressed in mammalian cell lines. Mutation of modified lysines in the collagenous domain prevented formation of HMW multimers, whereas a pharmacological inhibitor of prolyl- and lysyl-hydroxylases, 2,2'-dipyridyl, inhibited formation of hexamers and HMW multimers. Bacterially expressed human adiponectin displayed a complete lack of differentially modified isoforms and failed to form bona fide trimers and larger multimers. Finally, glucose-induced increases in HMW multimer production from human adipose explants correlated with changes in the two-dimensional electrophoresis profile of adiponectin isoforms. Collectively, these data suggest that adiponectin multimer composition is affected by changes in PTM in response to physiological factors.
Resumo:
The virulence of Pseudomonas aeruginosa and other surface pathogens involves the coordinate expression of a wide range of virulence determinants, including type IV pili. These surface filaments are important for the colonization of host epithelial tissues and mediate bacterial attachment to, and translocation across, surfaces by a process known as twitching motility. This process is controlled in part by a complex signal transduction system whose central component, ChpA, possesses nine potential sites of phosphorylation, including six histidine-containing phosphotransfer (HPt) domains, one serine-containing phosphotransfer domain, one threonine-containing phosphotransfer domain, and one CheY-like receiver domain. Here, using site-directed mutagenesis, we show that normal twitching motility is entirely dependent on the CheY-like receiver domain and partially dependent on two of the HPt domains. Moreover, under different assay conditions, point mutations in several of the phosphotransfer domains of ChpA give rise to unusual "swarming" phenotypes, possibly reflecting more subtle perturbations in the control of P. aeruginosa motility that are not evident from the conventional twitching stab assay. Together, these results suggest that ChpA plays a central role in the complex regulation of type IV pilus-mediated motility in P. aeruginosa