51 resultados para cuboidal and round-shaped trophocyte
Resumo:
Pumicestone Passage is a narrow waterway that lies to the north of and adjacent to Moreton Bay, and between mainland Queensland and Bribie Island, Australia. Anecdotal reports have suggested that the Passage is home to dugongs year-round despite winter water temperatures that are known to cause dugongs to migrate elsewhere. To examine the pattern of distribution and abundance of dugongs within the passage on a year-round basis, eight years of sightings data collected by a charter boat operator were examined. Dedicated aerial surveys of the passage were also conducted at two-monthly intervals over two years, and more intensively over a single winter. Dugong sightings were examined in relation to water temperatures and seagrass prevalence. The number of dugongs sighted in the area on any one survey varied from 0 to 13. Dugongs were seen in all months of the year and in each of the eight winters, indicating that Pumicestone Passage is used year-round despite winter water temperatures dropping to below 18 degrees C from June to August inclusive and below 16 degrees C in June. All dugong sightings occurred in the southern part of the passage, south of Tripcony Bight. Dugongs were associated with shallows that support Halophila and Halodule species of seagrass, food species that are favoured elsewhere in their range. The northern part of the passage also supports seagrasses that are eaten by dugongs and has water temperature ranges that are not appreciably different to those of the southern passage. However, the narrow channels and very shallow nature of the northern passage provides little to no deep-water refugia for dugongs and the seagrass beds are less extensive. This study suggests that southern Pumicestone Passage requires protection concomitant with it being a year-round refuge of the vulnerable dugong.
Resumo:
In this paper, we study the effect of solid surface mediation on the intermolecular potential energy of nitrogen, and its impact on the adsorption of nitrogen on a graphitized carbon black surface and in carbon slit-shaped pores. This effect arises from the lower effective interaction potential energy between two particles close to the surface compared to the potential energy of the same two particles when they are far away from the surface. A simple equation is proposed to calculate the reduction factor and this is used in the Grand Canonical Monte Carlo (GCMC) simulation of nitrogen adsorption on graphitized thermal carbon black. With this modification, the GCMC simulation results agree extremely well with the experimental data over a wide range of pressure; the simulation results with the original potential energy (i.e. no surface mediation) give rise to a shoulder in the neighbourhood of monolayer coverage and a significant over-prediction of the second and higher layer coverages. The influence of this surface mediation on the dependence of the pore-filling pressure on the pore width is also studied. It is shown that such surface mediation has a significant effect on the pore-filling pressure. This implies that the use of the local isotherms obtained from the potential model without surface mediation could give rise to a serious error in the determination of the pore-size distribution.
Resumo:
This article reports thermoset blends of bisphenol A-type epoxy resin (ER) and two amphiphilic four-arm star-shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4'-Methylenedianiline (MDA) was used as a curing agent. The first star-shaped diblock copolymer with 70 wt% ethylene oxide (EO), denoted as (PPO-PEO)(4), consists of four PPO-PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt% EO, denoted as (PEO-PPO)(4), contains four PEO-PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small-angle X-ray scattering. It was found that the MDA-cured ER/(PPO-PEO)(4) blends are not macroscopically phase-separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO-PEO)(4) blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO-PEO)(4) blends show composition-dependent nanostructures on the order of 10-30 nm. The 80/20 ER/(PPO-PEO)(4) blend displays spherical PPO micelles uniformly dispersed in a continuous ER-rich matrix. The 60/40 ER/(PPO-PEO)(4) blend displays a combined morphology of worm-like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA-cured ER/(PEO-PPO)(4) blends. The MDA-cured ER/(PEO-PPO)(4) blends with (PEO-PPO)(4) content up to 50 wt% exhibit phase-separated structures on the order of 0.5-1 mu m. This can be considered to be due to the different EO content and block sequence of the (PEO-PPO)(4) copolymer. (c) 2006 Wiley Periodicals, Inc.
Resumo:
To aid in the development of artificial diets for mass rearing parasitioids, we investigated the anatomical changes in the digestive tract during feeding behaviour of larval Trichogramma australicum (Hymenoptera: Trichogrammatidae). Larvae begin to feed immediately upon eclosion and feed continuously for 4 h until replete. Feeding is characterised by rhythmic muscle contractions (ca 1 per s) of the pharynx. Contractions of the pharyngeal dilator muscles lift the roof of the lobe-shaped pharynx away from the floor of the chamber, opening the mouth and pumping food into the pharyngeal cavity. Another muscle contraction occurs about 0.5 s later, forcing the bolus of food through the oesophagus and into the midgut. The junction of fore- and midgut is marked by a cardiac valve. The midgut occupies most of the body cavity and is lined with highly vacuolated, flattened cells and a dispersed layer of muscle cells. In the centre of the midgut, food has the appearance of host egg contents. Food near the midgut epithelial cells has a finer, more homogeneous appearance. This change in the physical properties of the gut contents is indicative of the digestion process. In the prepupa, where digestion is complete, the entire gut contents have this appearance. After eclosion, the vitelline membrane remains attached to the posterior end of the larva. We believe this attachment to be adaptive in two ways: (1) to anchor the larva against the movements of its anterior portion, thereby increasing the efficiency of foraging within the egg, and (2) to prevent a free-floating membrane from clogging the mouthparts during ingestion. 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.
Resumo:
The Apocreadiidae is reviewed and is considered to include genera recognised previously within the families Apocreadiidae, Homalometridae, Schistorchiidae, Sphincterostomatidae and Trematobrienidae. Key features of the family are extensive vitelline follicles, eye-spot pigment dispersed in forebody, I-shaped excretory vesicle, no cirrus-sac and genital pore opening immediately anterior to the ventral sucker (usually) or immediately posterior to it (Postporus Manter, 1949). Three subfamilies and 18 genera are recognised within the Apocreadiidae. The Apocreadiinae comprises Homalometron Stafford, 1904 (new syn. Barbulostomum Ramsey, 1965), Callohelmis n. g., Choanodera Manter, 1940, Crassicutis Manter, 1936, Dactylotrema Bravo-Hollis & Manter, 1957, Marsupioacetabulum Yamaguti, 1952, Microcreadium Simer, 1929, Myzotus Manter, 1940, Neoapocreadium Siddiqi & Cable, 1960, Neomegasolena Siddiqi & Cable, 1960, Pancreadium Manter, 1954, Procaudotestis Szidat, 1954 and Trematobrien Dollfus, 1950. The Schistorchiinae comprises Schistorchis Luhe, 1906, Sphincterostoma Yamaguti, 1937, Sphincteristomum Oshmarin, Mamaev & Parukhin, 1961 and Megacreadium Nagaty, 1956. The Postporinae comprises only Postporus. A key to subfamilies and genera of the Apocreadiidae is provided. It is argued that there is no convincing basis for the recognition of the genus Apocreadium Manter, 1937 and all its constituent species are combined with Homalometron. The following new combinations are proposed for species previously recognised within Apocreadium: Homalometron balistis (Manter, 1947), H. caballeroi (Bravo-Hollis, 1953), H. cryptum (Overstreet, 1969), H. longisinosum (Manter, 1937), H. manteri (Overstreet, 1970), H. mexicanum (Manter, 1937) and H. vinodae (Ahmad, 1985). Apocreadium uroproctoferum Sogandares-Bernal, 1959 is found to lack a uroproct and is made a synonym of H. mexicanum. Homalometron verrunculi nom. nov. is proposed to replace the secondarily pre-occupied H. caballeroi Lamothe-Argumedo, 1965. Barbulostomum is made a synonym of Homalometron and H. cupuloris (Ramsey, 1965) n. comb. is proposed. Neochoanodera is made a synonym of Choanodera and Choanodera ghanensis (Fischthal & Thomas, 1970) n. comb. is proposed. Species within the Apocreadiinae and Postporinae are reviewed and the following are recorded or described from Australian fishes: Homalometron wrightae n. sp. from Achlyopa nigra (Macleay), H. synagris (Yamaguti, 1953) n. comb. from Scolopsis monogramma (Cuvier), H. stradbrokensis n. sp. from Gerres subfasciatus Cuvier, Marsupioacetabulum opallioderma n. sp. from G. subfasciatus, Neoapocreadium karwarensis (Hafeezullah, 1970) n. comb. from G. subfasciatus, N. splendens n. sp. from S. monogramma and Callohelmis pichelinae n. g., n. sp. from Hemigymnus melapterus (Bloch), H. fasciatus (Bloch), Stethojulis bandanensis (Bleeker) andChoerodon venustus (De Vis). Callohelmis is recognised by the combination of absence of tegumental spines, caeca terminating midway between the testes and posterior end of body, ventral sucker enclosed in a tegumental pouch, prominent muscles radiating through the body from the ventral sucker, vitelline follicles not extending into the forebody, and a very short excretory vesicle that opens ventrally. New combinations for species previously recognised within Crassicutis are proposed as follows: Neoapocreadium caranxi (Bilqees, 1976) n. comb., N. gerridis (Nahhas & Cable, 1964) n. comb., N. imtiazi (Ahmad, 1984) n. comb. and N. marina (Manter, 1947) n. comb. The host-specificity and zoogeography of the Apocreadiinae are considered.
Resumo:
This paper describes the ocular morphology of young adults of the southern hemisphere lamprey Geotria australis, the sole representative of the Geotriidae, and makes comparisons with those of holarctic lampreys (Petromyzontidae). As previously reported for the holarctic lamprey Ichthyomyzon unicuspis [Collin and Fritzsch, 1993], the lens of G. australis is non-spherical and possesses a cone-shaped posterior that may be capable of mediating variable focus. The avascular retina of G. australis is well differentiated, containing three retinal ganglion cell populations, three layers of horizontal cells and three photoreceptor types, in contrast to petromyzontids that contain only two photoreceptor types (short and long), G. australis possesses one rod-like (R1) and two cone-like (C1 and C2) photoreceptors. Although the rodlike receptor in G. australis may be homologous with the short receptors of holarctic lampreys, the two cone-like receptors have morphological characteristics that differ markedly from those of the long receptors of their holarctic counterparts. The features which distinguish the two cone-like receptors from those of the long receptor type in holarctic lampreys are the characteristics of the mitochondria and the presence of large amounts of two different types of stored secretory material in the endoplasmic reticulum of the myoid (refractile bodies). The endoplasmic reticulum of each receptor type has a different shape and staining profile and is polymorphic, each showing a continuum of distension. It is proposed that the presence of two cone-like photoreceptors with different characteristics would increase the spectral range of G. australis and thus be of value during the parasitic phase, when this lamprey lives in the surface marine waters. The irideal flap, present in G. australis but not petromyzontids, would assist in reducing intraocular flare during life in surface waters. The results of this study, which are discussed in the context of the proposed evolution of lampreys, emphasise that it is important to take into account the characteristics of the eyes of southern hemisphere lampreys when making generalizations about the eyes of lampreys as a whole.
Resumo:
Caterpillars of Euploea core corinna (W. S. Macleay) sever leaf veins prior to feeding on their latex-bearing host plants, which restricts the flow of latex at feeding sites. The severing of leaf veins by insects feeding on latex-bearing plants is commonly referred to as 'sabotaging' and is thought to be an evolved response by the insect to counter the negative effects of feeding on latex-rich leaves. Sabotaging behaviour is described for all instars of E. core corinna, with particular attention given to neonates. Vein cutting by neonate E. core corinna caterpillars can occur within 2 h of hatching, with most caterpillars establishing feeding sites within 10 h. Commonly, first instars cut an are-shaped row of leaf side-veins parallel to the leaf margin, but they may also cut the leaf mid-rib in a fashion similar to older instar larvae. From a sample of 50 E. core corinna larvae, representing all instars, we found that the diameters of the veins cut by caterpillars are closely correlated to larval head width (r=0.90). Through manipulative experiments, we demonstrate for the first time that sabotaging behaviour in neonate caterpillars imposes no detectable short-term physiological costs on those caterpillars.
Resumo:
The offspringof older fathers have an increased risk of various disorders that may be due to the accumulation of DNA mutations during spermatogenesis. Previous studies have suggested increased paternal age may be a risk factor for schizophrenia. The aim of the current study was to examine paternal age as a risk factor for schizophrenia andror psychosis. We used data from three sources: a population-based cohort studyŽDenmark., and two case-control studiesŽSweden and Australia.. In the Danish and Australian studies, we examined both psychosis and schizophrenia. In the Swedish study we examined psychosis only. After controllingfor the effect of maternal age, increased paternal age was significantly associated with increased risk of both psychosis and schizophrenia in the Danish study and of psychosis in the Swedish study. The Australian study found no association between paternal age and risk of psychosis or schizophrenia. In all three studies the relationship between paternal age and risk of disorder in the offspring was AUB-shaped. In addition to an increased risk for the offspringof older father Ž)35 years., there was a non-significant increase for the offspringof fathers aged less than 20 years. The possible role of paternally derived DNA mutations andror other psychosocial factors associated with older paternal age warrants further research. The ‘U’-shaped relationship suggests that factors other than DNA mutations may warrant consideration in this research. The Stanley Foundation supported this project.
Resumo:
Keratins are the major structural proteins of keratinocytes, which are the most abundant cell type in the mammalian epidermis. Mutations in epidermal keratin genes have been shown to cause severe blistering skin abnormalities. One such disease, epidermolytic hyperkeratosis (EHK), also known as bullous congenital ichthyosiform erythroderma, occurs as a result of mutations in highly conserved regions of keratins K1 and K10. Patients with EHK first exhibit erythroderma with severe blistering, which later is replaced by thick patches of scaly skin. To assess the effect of a mutated K1 gene on skin biology and to produce an animal model for EHK, we removed 60 residues from the 2B segment of HK1 and observed the effects of its expression in the epidermis of transgenic mice. Phenotypes of the resultant mice closely resembled those observed in the human disease, first with epidermal blisters, then later with hyperkeratotic lesions. In neonatal mice homozygous for the transgene, the skin was thicker, with an increased labeling index, and the spinous cells showed a collapse of the keratin filament network around the nuclei, suggesting that a critical concentration of the mutant HK1, over the endogenous MK1, was required to disrupt the structural integrity of the spinous cells. Additionally, footpad epithelium, which is devoid of hair follicles, showed blistering in the spinous layer, suggesting that hair follicles can stabilize or protect the epidermis from trauma. Blisters were not evident in adult mice, but instead they showed a thick, scaly hyperkeratotic skin with increased mitosis, resulting in an increased number of corneocytes and granular cells. Irregularly shaped keratohyalin granules were also observed. To date, this is the only transgenic model to show the typical morphology found in the adult form of EHK.
Resumo:
The results of this study challenge the widely held view that growth hormone (GH) acts only during the postnatal period. RNA phenotyping shows transcripts for the GH receptor and GH-binding protein in mouse preimplantation embryos of all stages from fertilized eggs (day 1) to blastocysts (day 4). An antibody specific to the cytoplasmic region of the GH receptor revealed receptor protein expression, first in two-cell embryos, the stage of activation of the embryonic genome (day 2), and in all subsequent stages, In cleavage-stage embryos this immunoreactivity was localized mainly to the nucleus, but clear evidence of membrane labeling was apparent in blastocysts. GH receptor immunoreactivity was also observed in cumulus cells associated with unfertilized oocytes but not in the unfertilized oocytes. The blastocyst receptor was demonstrated to be functional, exhibiting the classic bell-shaped dose-response curves for GH stimulation of both 3-O-methyl glucose transport and protein synthesis. Maximal stimulation of 40-50% was seen for both responses at less than 1 ng/ml recombinant GH, suggesting a role for maternal GK. However mRNA transcripts for GH were also detected from the morula stage (day 3) by using reverse transcription-PCR, and GH immunoreactivity was seen in blastocysts. These observations raise the possibility of a paracrine/autocrine GH loop regulating embryonic development in its earliest stages.