41 resultados para crop components
Resumo:
Recombinant cathepsin D aspartic protease of Schistosoma japonicum cleaved human IgG in vitro in a time and dose-dependent manner. Optimal cleavage was seen at pH 3.6-4.5; modest cleavage remained at pH 5.0, and no cleavage was detected above pH 5.0. Amino terminal sequencing of the major cleavage fragments of human IgG identified a Fab fragment from the VH1 domain, and 2 cleavage sites in the CH2 domain below the hinge region. The P1 and P1' residues at the 2 CH2 cleavage sites were Phe254-Leu255 and Leu325-Thr326, indicating a preference by the schistosome protease for bulky hydrophobic residues flanking the scissile bond. No cleavage of the immunoglobulin light chain was detected. In addition, the recombinant schistosome protease indiscriminately degraded the human serum proteins complement C3 and serum albumin into numerous small fragments. These results demonstrate specific cleavage of human IgG by the recombinant schistosome aspartic protease, and highlight the broad range digestive specificity of the enzyme which may play a role in the degradation of host serum proteins ingested as part of the schistosome bloodmeal.
Resumo:
This paper reports a study in the wet tropics of Queensland on the fate of urea applied to a dry or wet soil surface under banana plants. The transformations of urea were followed in cylindrical microplots (10.3 cm diameter x 23 cm long), a nitrogen (N) balance was conducted in macroplots (3.85 m x 2.0 m) with N-15 labelled urea, and ammonia volatilization was determined with a mass balance micrometeorological method. Most of the urea was hydrolysed within 4 days irrespective of whether the urea was applied onto dry or wet soil. The nitrification rate was slow at the beginning when the soil was dry, but increased greatly after small amounts of rain; in the 9 days after rain 20% of the N applied was converted to nitrate. In the 40 days between urea application and harvesting, the macroplots the banana plants absorbed only 15% of the applied N; at harvest the largest amounts were found in the leaves (3.4%), pseudostem (3.3%) and fruit (2.8%). Only 1% of the applied N was present in the roots. Sixty percent of the applied N was recovered in the soil and 25% was lost from the plant-soil system by either ammonia volatilization, leaching or denitrification. Direct measurements of ammonia volatilization showed that when urea was applied to dry soil, and only small amounts of rain were received, little ammonia was lost (3.2% of applied N). In contrast, when urea was applied onto wet soil, urea hydrolysis occurred immediately, ammonia was volatilized on day zero, and 17.2% of the applied N was lost by the ninth day after that application. In the latter study, although rain fell every day, the extensive canopy of banana plants reduced the rainfall reaching the fertilized area under the bananas to less than half. Thus even though 90 mm of rain fell during the volatilization study, the fertilized area did not receive sufficient water to wash the urea into the soil and prevent ammonia loss. Losses by leaching and denitrification combined amounted to 5% of the applied N.
Resumo:
The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.
Resumo:
Promotion of fruit abscission in macadamia, Macadamia integrifolia (Proteaceae), has potential to reduce costs associated with prolonged harvesting of late-abscising cultivars. Effects of ethephon [(2-chloroethyl) phosphonic acid] on fruit removal force and crop abscission were monitored at 3 stages of the harvest season on both unshaken and mechanically shaken trees of the late-abscising macadamia cultivar A16. Ethephon application, tree shaking, or a combination of the 2 methods, accelerated crop removal from the tree at all stages during harvest. Early harvest before natural abscission resulted in little or no difference in nut-in-shell and kernel weight, kernel recovery and kernel oil content. Delaying ethephon application or tree shaking until commencement of natural abscission resulted in greater crop removal. Fruit removal force declined naturally towards 1 kgf at this stage, and was further reduced by ethephon application. The most effective approach for harvest acceleration was to reduce fruit removal force, before tree shaking, by spraying trees with ethephon.
Resumo:
We tested the hypothesis that early-planted seedbeds of rioe are mere heavily infested with brown planthopper (BPH) than later seedbeds, and that transplanted plants with lBPH are a source of subsequent population increase and possible outbreaks. The experiments were conducted at CARDI and Takeo province in wet season 2000 and early wet 2 season 200 I. BPH at O. 25. 50, 100, 200 1m were infested onto plants with low and high fertilizer treatments. Rice seeds of varieties moderately and highly susceptible to BPH were sown 3 weeks early, 2 weeks early, at the normal time, and later than normal (5 weeks) and treated with low and high fertilizer rates. At Takeo, the 3< weeks early seedbeds were infested by BPH migration, and both varieties with high fertilizer caught more immigrant insects and subsequently had damaging outbreaks of BPH in the third generation. At CARDl, no seedbeds were infested with immigrant BPH. Seedbeds in areas with continuous cropping of rice have a high risk of BPH attack, Seedlings infested with 200, 100, and 50 BPI[/m2 resulted in death of the plant. Plants with 100 and 200 BPH/m'! were kj[Jed sooner. With 25 BPIVm2 plants were not kllled, but subsequent population increase caused yi eld reduction. Yield loss was high ill higlh fertilizer treated plants. Key words , ,
Resumo:
Fault detection and isolation (FDI) are important steps in the monitoring and supervision of industrial processes. Biological wastewater treatment (WWT) plants are difficult to model, and hence to monitor, because of the complexity of the biological reactions and because plant influent and disturbances are highly variable and/or unmeasured. Multivariate statistical models have been developed for a wide variety of situations over the past few decades, proving successful in many applications. In this paper we develop a new monitoring algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relationships between variables at different time-scales. Adaptation of scale PCA models over time permits them to follow the evolution of the process, inputs or disturbances. Performance of AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The most significant difference observed was the ability of AdMSPCA to adapt to a much wider range of changes. This was mainly due to the flexibility afforded by allowing each scale model to adapt whenever it did not signal an abnormal event at that scale. Relative detection speeds were examined only summarily, but seemed to depend on the characteristics of the faults/disturbances. The results of the algorithms were similar for sudden changes, but AdMSPCA appeared more sensitive to slower changes.
Resumo:
Hypersensitivity to external stimuli, progressing in some animals to manic behaviour, occurred in a cattle herd that grazed a crop of field peas (Pisum sativum var arvense) in the pre-flowering stage. Haematological and biochemical analyses eliminated hypomagnesaemia and ketosis as diagnoses. Other than two steers euthanased due to injuries sustained during manic episodes, all affected animals survived, recovering over 3 days when moved to alternative pasture. No necropsies were conducted. No microbial pathogens or endophytes were found on or in the plants. A previously reported incident in Victoria in 1987 in cattle grazing peas appeared to be of a similar nature. Environmental factors leading to these incidents were not clearly identified.
Resumo:
Responses of rice genotypes to drought stress may be different when characteristics of the drought stress environments differ. The performance of 128 genotypes was examined under irrigation and four different types of drought stress, to determine genotypic consistency in yield and factors determining yields under different drought stress conditions. The different drought conditions were mild drought during grain filling, short and severe drought at flowering, prolonged severe drought during the reproductive to grain filling, and prolonged mild drought during vegetative and grain filling. Genotypic grain yield under mild stress conditions was associated with yield under irrigated conditions, indicating the importance of potential yield in environments where the yield reduction was less than 50%. However, yields under irrigated conditions differed over time and locations. Under prolonged or severe drought conditions, flowering time was an important determinant of grain yield. Earlier flowering genotypes escaped the severe stress and had higher grain yields indicating large genotype by environment (G x E) interactions which have implications for plant breeding even for mild stress. It is suggested that variations in flowering time, potential yields and drought patterns need to be considered for development of drought-resistant cultivars using specific physiological traits. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The Tully Sugar Mill has collected information about sugarcane supplied for crushing from every block in the mill district from 1970 to 1999. Data from 1988 to 1999 were analysed to understand the extent of the variation in cane yield per hectare and commercial cane sugar in the Tully mill area. The key factors influencing the variation in cane yield and commercial cane sugar in this commercial environment were identified and the variance components computed using a restricted maximum likelihood methodology. Cane yield was predominantly influenced by the year in which it was harvested, the month when the crop was ratooned (month of harvest in the previous year) and the farm of origin. These variables were relatively more important than variety, age of crop or crop class (plant crop, first ratoon through to fourth or older ratoons) and fallowing practice (fallow or ploughout-replant). The month-of-ratooning effect was relatively stable from year-to-year. Commercial cane sugar was influenced by the year of harvest, the month of harvest and their interaction, in that the influence of the month of harvest varied from year to year. Variety and farm differences were also significant but accounted for a much lower portion of the variation in commercial cane sugar. An empirical model was constructed from the key factors that influenced commercial cane sugar and cane yield to quantify their combined influence on sugar yield (t/ha). This may be used to assist mill personnel to predict their activities more accurately, for example to calculate the impact of a late finish to the current harvest season on the following year's crop.