40 resultados para correlated fading
Resumo:
A blind nonlinear interference cancellation receiver for code-division multiple-access- (CDMA-) based communication systems operating over Rayleigh flat-fading channels is proposed. The receiver which assumes knowledge of the signature waveforms of all the users is implemented in an asynchronous CDMA environment. Unlike the conventional MMSE receiver, the proposed blind ICA multiuser detector is shown to be robust without training sequences and with only knowledge of the signature waveforms. It has achieved nearly the same performance of the conventional training-based MMSE receiver. Several comparisons and experiments are performed based on examining BER performance in AWGN and Rayleigh fading in order to verify the validity of the proposed blind ICA multiuser detector.
Resumo:
This correspondence considers block detection for blind wireless digital transmission. At high signal-to-noise ratio (SNR), block detection errors are primarily due to the received sequence having multiple possible decoded sequences with the same likelihood. We derive analytic expressions for the probability of detection ambiguity written in terms of a Dedekind zeta function, in the zero noise case with large constellations. Expressions are also provided for finite constellations, which can be evaluated efficiently, independent of the block length. Simulations demonstrate that the analytically derived error floors exist at high SNR.
Resumo:
We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus allows first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness of the basis and derive differential forms for products with one- and two-body operators. Because the basis satisfies fermionic superselection rules, the resulting phase space involves only c-numbers, without requiring anticommuting Grassmann variables. Furthermore, because of the overcompleteness of the basis, the phase-space distribution can always be chosen positive. This has important consequences for the sign problem in fermion physics.
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
Resumo:
Purpose: The physical environment plays an important role in influencing participation in physical activity, although the specific factors that are correlated with different patterns of walking remain to be determined We examined correlations between physical environmental factors and self-reported walking for recreation and transport near home. Methods: The local neighborhood environments (defined as a 400-m radius from the respondent's home) of 1678 adults were assessed for their suitability for walking. The environmental data were collected during 2000 using the Systematic Pedestrian and Cycling Environmental Scan (SPACES) instrument together with information from other sources. We used logistic regression modeling to examine the relationship between the attributes of the physical environment and the self-reported walking behavior undertaken near home. Results: Functional features were correlated with both walking for recreation (odds ratio (OR) 1.62; 95% confidence interval (Cl): 1.20-2.19) and for transport (OR 1.30; 95% Cl: 0.97-1.73). A well-maintained walking surface was the main functional factor associated with walking for recreation (OR 2.04; 95% Cl: 1.43-2.91) and for transport (OR 2.13; 95% Cl: 1.53-2.96). Destination factors, such as shops and public transport, were significantly correlated with walking for transport (OR 1.80; 95% Cl: 1.33-2.44), but not recreation. Conclusion: The findings suggest that neighborhoods with pedestrian facilities that are attractive and comfortable and where there are local destinations (such as shops and public transport) are associated with walking near home.
Resumo:
Univariate linkage analysis is used routinely to localise genes for human complex traits. Often, many traits are analysed but the significance of linkage for each trait is not corrected for multiple trait testing, which increases the experiment-wise type-I error rate. In addition, univariate analyses do not realise the full power provided by multivariate data sets. Multivariate linkage is the ideal solution but it is computationally intensive, so genome-wide analysis and evaluation of empirical significance are often prohibitive. We describe two simple methods that efficiently alleviate these caveats by combining P-values from multiple univariate linkage analyses. The first method estimates empirical pointwise and genome-wide significance between one trait and one marker when multiple traits have been tested. It is as robust as an appropriate Bonferroni adjustment, with the advantage that no assumptions are required about the number of independent tests performed. The second method estimates the significance of linkage between multiple traits and one marker and, therefore, it can be used to localise regions that harbour pleiotropic quantitative trait loci (QTL). We show that this method has greater power than individual univariate analyses to detect a pleiotropic QTL across different situations. In addition, when traits are moderately correlated and the QTL influences all traits, it can outperform formal multivariate VC analysis. This approach is computationally feasible for any number of traits and was not affected by the residual correlation between traits. We illustrate the utility of our approach with a genome scan of three asthma traits measured in families with a twin proband.
Resumo:
This paper describes investigations into an optimal transmission scheme for a multiple input multiple output (MIMO) system operating in a Rician fading environment. The considerations are reduced to determining a covariance matrix of transmitted signals which maximizes the MIMO capacity under the condition that the receiver has perfect knowledge of the channel while the transmitter has the information about selected statistical quantities which are measured at the receiver. An optimal covariance matrix, which requires information of the Rice factor and the signal to noise ratio, is determined. The transmission scheme relying on the choice of the proposed covariance matrix outperforms the other transmission schemes which were reported earlier in the literature. The proposed scheme realizes an upper bound limit for the MIMO capacity under arbitrary Rician fading conditions. ©2005 IEEE