34 resultados para continuous heart rate monitoring
Resumo:
In this paper, a new method for characterizing the newborn heart rate variability (HRV) is proposed. The central of the method is the newly proposed technique for instantaneous frequency (IF) estimation specifically designed for nonstationary multicomponen signals such as HRV. The new method attempts to characterize the newborn HRV using features extracted from the time–frequency (TF) domain of the signal. These features comprise the IF, the instantaneous bandwidth (IB) and instantaneous energy (IE) of the different TF components of the HRV. Applied to the HRV of both normal and seizure suffering newborns, this method clearly reveals the locations of the spectral peaks and their time-varying nature. The total energy of HRV components, ET and ratio of energy concentrated in the low-frequency (LF) to that in high frequency (HF) components have been shown to be significant features in identifying the HRV of newborn with seizures.
Resumo:
In this paper, we propose features extracted from the heart rate variability (HRV) based on the first and second conditional moments of time-frequency distribution (TFD) as an additional guide for seizure detection in newborn. The features of HRV in the low frequency band (LF: 0-0.07 Hz), mid frequency band (MF: 0.07-0.15 Hz), and high frequency band (HF: 0.15-0.6 Hz) have been obtained by means of the time-frequency analysis using the modified-B distribution (MBD). Results of ongoing time-frequency research are presented. Based on our preliminary results, the first conditional moment of HRV which is also known as the mean/central frequency in the LF band and the second conditional moment of HRV which is also known as the variance/instantaneous bandwidth (IB) in the HF band can be used as a good feature to discriminate the newborn seizure from the non-seizure
Relationship between laboratory measured variables and heart rate during an untraendurance triathlon
Resumo:
Background and Purpose. Cardiorespiratory fitness is increasingly being recognized as an impairment requiring physiotherapy intervention after stroke. The present study seeks to investigate if routine physiotherapy treatment is capable of inducing a cardiorespiratory training effect and if stroke patients attending physiotherapy who are unable to walk experience less cardiorespiratory stress during physiotherapy when compared to those who are able to walk. Method. A descriptive, observational study, with heart rate monitoring and video-recording of physiotherapy rehabilitation, was conducted. Thirty consecutive stroke patients from a geriatric and rehabilitation unit of a tertiary metropolitan hospital, admitted for rehabilitation, and requiring physiotherapy were included in the study. The main measures of the study were duration (time) and intensity (percentage of heart rate reserve) of standing and walking activities during physiotherapy rehabilitation for non-walking and walking stroke patients. Results. Stroke patients spent an average of 21 minutes participating in standing and walking activities that were capable of inducing a cardiorespiratory training effect. Stroke patients who were able to walk spent longer in these activities during physiotherapy rehabilitation than non-walking stroke patients (p < 0.05). An average intensity of 24% heart rate reserve (HRR) during standing and walking activities was insufficient to result in a cardiorespiratory training effect, with a maximum of 35% achieved for the stroke patients able to walk and 30% for those unable to walk. Conclusions. Routine physiotherapy rehabilitation had insufficient duration and intensity to result in a cardiorespiratory training effect in our group of stroke patients. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
Introduction: Walking programmes are recommended as part of the initial treatment for intermittent claudication (IC). However, for many patients factors such as frailty, the severe leg discomfort associated with walking and safety concerns about exercising in public areas reduce compliance to such prescription. Thus, there is a need to identify a mode of exercise that provides the same benefits as regular walking while also offering convenience and comfort for these patients. The present study aims to provide evidence for the first time of the efficacy of a supervised cycle training programme compared with a conventional walking programme for the treatment of IC. Methods: Thus far 33 patients have been randomized to: a treadmill-training group (n = 12); a cycle-training group (n = 11); or a control group (n = 10). Training groups participated in three sessions of supervised training per week for a period of 6 weeks. Control patients received no experimental intervention. Maximal incremental treadmill testing was performed at baseline and after the 6 weeks of training. Measures included pain-free (PFWT) and maximal walking time (MWT), continuous heart rate and gas-analysis recording, and ankle-brachial index assessment. Results: In the treadmill trained group MWT increased significantly from 1016.7 523.7 to 1255.2 432.2 s (P < 0.05). MWT tended to increase with cycle training (848.72 333.18 to 939.54 350.35 s, P = 0.14), and remained unchanged in the control group (1555.1 683.23 to 1534.7 689.87 s). For PFWT, there was a non-significant increase in the treadmill-training group from 414.4 262.3 to 592.9 381.9 s, while both the cycle training and control groups displayed no significant change in this time (226.7 147.1 s to 192.3 56.8 and 499.4 503.7 s to 466.0 526.1 s, respectively). Conclusions: These preliminary results might suggest that, unlike treadmill walking, cycling has no clear effect on walking performance in patients with IC. Thus the current recommendations promoting walking based programmes appear appropriate. The present study was funded by the National Heart Foundation of Australia.
Resumo:
Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.
Resumo:
Pulse Transit Time (PTT) measurement has showed potential in non-invasive monitoring of changes in blood pressure. In children, the common peripheral sites used for these studies are a finger or toe. Presently, there are no known studies conducted to investigate any possible physiologic parameters affecting PTT measurement at these sites for children. In this study, PTT values of both peripheral sites were recorded from 64 children in their sitting posture. Their mean age with standard deviation (SD) was 8.2 2.6years (ranged 3 to 12years). Subjects' peripheries path length, heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP) were measured to investigate any contributions to PTT measurement. The peripheral pulse timing characteristic measured by photoplethysmography (PPG) shows a 59.5 8.5ms (or 24.8 0.4%) difference between the two peripheries (p
Resumo:
Objective: To compare the effectiveness of three dosing regimens of caffeine for preterm infants in the periextubation period. Methods: A randomized double-blind clinical trial of three dosing regimens of caffeine citrate ( 3, 15 and 30 mg/kg) for periextubation management of ventilated preterm infants was undertaken. Infants born < 32 weeks gestation who were ventilated for > 48 h were eligible for the study. Caffeine citrate was given as a once daily dose for a period of 6 days commencing 24 h prior to a planned extubation, or within 6 h of an unplanned extubation. The primary outcome measure was extubation failure, defined as neonates who were unable to be extubated within 48 h of caffeine loading or who required reventilation or doxapram dose within 7 days of caffeine loading. Continuous recordings of oxygen saturation and heart rate were undertaken in a subgroup of enrolled infants. Results: A total of 127 babies were enrolled into the study ( 42, 40, 45, in the 3, 15, and 30 mg/kg groups, respectively). No statistically significant difference was demonstrated in the incidence of extubation failure between dosing groups ( 19, 10, and 11 infants in the 3, 15, and 30 mg/kg groups, respectively), however, infants in the two higher dose groups had statistically significantly less documented apnoea than the lowest dose group. Of the 37 neonates with continuous pulse oximetry recordings, those on higher doses of caffeine recorded a statistically significantly higher mean heart rate, oxygen saturations and less time with oxygen saturations < 85%. Conclusions: This trial indicated there were short-term benefits of decreased apnoea in the immediate periextubation period for ventilated infants born < 32 weeks gestation receiving higher doses of caffeine. Further studies with larger numbers of infants assessing longer-term outcomes are necessary to determine the optimal dosing regimen of caffeine in preterm infants.
Resumo:
Remote measurement of the physiology, behaviour and energetic status of free-living animals is made possible by a variety of techniques that we refer to collectively as 'biotelemetry'. This set of tools ranges from transmitters that send their signals to receivers up to a few kilometers away to those that send data to orbiting satellites and, more frequently, to devices that log data. They enable researchers to document, for long uninterrupted periods, how undisturbed organisms interact with each other and their environment in real time. In spite of advances enabling the monitoring of many physiological and behavioural variables across a range of taxa of various sizes, these devices have yet to be embraced widely by the ecological community. Our review suggests that this technology has immense potential for research in basic and applied animal ecology. Efforts to incorporate biotelemetry into broader ecological research programs should yield novel information that has been challenging to collect historically from free-ranging animals in their natural environments. Examples of research that would benefit from biotelemetry include the assessment of animal responses to different anthropogenic perturbations and the development of life-time energy budgets.
Resumo:
Background Diastolic heart failure (DHF) is characterized by dyspnea due to increased left ventricular (LV) filling pressures during stress. We sought the relationship of exercise-induced increases in B-type natriuretic peptide (BNP) to LV filling pressures and parameters of cardiovascular performance in suspected DHF. Methods Twenty-six treated hypertensive patients with suspected DHF (exertional dyspnea, LV ejection fraction >50%, and diastolic dysfunction) underwent maximal exercise echocardiography using the Bruce protocol. BNP, transmitral Doppler, and tissue Doppler for systolic (So) and early (Ea) and late (Aa) diastolic mitral annular velocities were obtained at rest and peak stress. LV filling pressures were estimated with E/Ea ratios. Results Resting BNP correlated with resting pulse pressure (r=0.45, P=0.02). Maximal exercise performance (4.6 +/- 2.5min) was limited by dyspnea. Blood pressure increased with exercise (from 143 +/- 19/88 +/- 8 to 191 +/- 22/90 +/- 10 mm Hg); 13 patients (50%) had a hypertensive response. Peak exercise BNP correlated with peak transmitral E velocity (r = 0.41, P <.05) and peak heart rate (r = -0.40, P <.05). BNP increased with exercise (from 48 57 to 74 97 pg/mL, P =.007), and the increment of BNP with exercise was associated with maximal workload and peak exercise So, Ea, and Aa (P <.01 for all). Filling pressures, approximated by lateral E/Ea ratio, increased with exercise (7.7 +/- 2.0 to 10.0 +/- 4.8, P <.01). BNP was higher in patients with possibly elevated filling pressures at peak exercise (E/Ea >10) compared to those with normal pressures (123 +/- 124 vs 45 +/- 71 pg/mL, P =.027). Conclusions Augmentation of BNP with exercise in hypertensive patients with suspected DHF is associated with better exercise capacity, LV systolic and diastolic function, and left atrial function. Peak exercise BNP levels may identify exercise-induced elevation of filling pressures in DHF.
Resumo:
Background: Fetal scalp lactate testing has been shown to be as useful as pH with added benefits. One remaining question is What level of lactate should trigger intervention in the first stage of labour?' Aims: This study aimed to establish the lactate level in the first stage of labour that indicates the need for intervention to ensure satisfactory outcomes for both babies and mothers. Methods: A prospective study at Mater Mothers' Hospital, Brisbane, Australia, a tertiary referral centre. One hundred and forty women in labour, with non-reassuring fetal heart rate traces, were tested using fetal blood scalp sampling of 5 mu L of capillary blood tested on an Accusport (Boeringer, Mannheim, East Sussex, UK) lactate meter. Decision to intervene in labour was based on clinical assessment plus a predetermined cut off. Main outcome measures were APGAR scores, cord arterial pH, meconium stained liquor and Intensive Care Nursery admission. Results: Two-graph receiver operating characteristic (TG-ROC) analysis showed optimal specificity, and sensitivity for predicting adverse neonatal outcomes was a scalp lactate level above 4.2 mmol/L. Conclusions: Fetal blood sampling remains the standard for further investigating-non-reassuring cardiotocograph (CTG) traces. Even so, it is a poor predictor of fetal outcomes. Scalp lactate has been shown to be at least as good a predictor as scalp pH, with the advantages of being easier, cheaper and with a lower rate of technical failure. Our study, found that a cut off fetal scalp lactate level of 4.2 mmol/L, in combination with an assessment of the entire clinical picture, is a useful tool in identifying those women who need intervention.
Resumo:
Characteristics obtained from peripheral pulses can be used to assess the status of cardiovascular system of subjects. However, nonintrusive techniques are preferred when prolonged monitoring is required for their comfort. Pulse transit time ( PTT) measurement has showed its potentials to monitor timing changes in peripheral pulse in cardiovascular and respiratory studies. In children, the common peripheries used for these studies are fingers or toes. Presently, there is no known study conducted on children to investigate the possible physiologic parameters that can confound PTT measure at these sites. In this study, PTT values from both peripheral sites were recorded from 55 healthy Caucasian children ( 39 male) with mean age of 8.4 +/- 2.3 years ( range 5 - 12 years). Peripheries' path length, heart rate, systolic blood pressure, diastolic blood pressure ( DBP) and mean arterial pressure ( MAP) were measured to investigate their contributions to PTT measurement. The results reveal that PTT is significantly related to all parameters ( P< 0.05), except for DBP and MAP. Age is observed to be the dominant factor that affects PTT at both peripheries in a child. Regression equations for PTT were derived for measuring from a finger and toe, ( 6.09 age + 189.2) ms and ( 6.70 age + 243.0) ms, respectively.
Resumo:
Seven captive male African wild dogs (Lycaon pictus) weighing 25-32 kg each, were anesthetized by i.m. injection via hand syringe with a combination of 1.5 mg/kg ketamine, 40 mu g/kg medetomidine, and 0.05 mg/kg atropine. Following endotracheal intubation, each animal was connected to a bain closed-circuit system that delivered 1.5% isoflurane and 2 L/min oxygen. Atipamezole (0.1 mg/kg i.v.; 0.1 mg/kg i.m.) was given at the end of each procedure (60 min following injection of medetomidine/ketamine/atropine). Time to sternal recumbency was 5-8 min. Times to standing after atipamezole administration were 8-20 min. This anesthetic regimen was repeated on three separate occasions (September 2000, February 2002, and October 2002) on all males to perform electroejaculation procedures. Each procedure was < 80 min from injection to standing. Dogs showed excellent muscle relaxation during the procedures. Arterial blood samples were collected at 10-min intervals for blood gases in one procedure (September 2000). Separate venous samples were taken from each dog during each procedure for hematology and biochemistry. These values were within the normal range for this species. Arterial hemoglobin oxygen saturation (SpO2) and heart rate (HR) were monitored continuously in addition to other anesthesia monitoring procedures (body temperature, respiratory rate [RR], capillary refill time, blink response, pupil position, deep pain perception reflex). All dogs maintained relatively stable SpO2 profiles during monitoring, with a mean (+/- SD) SpO2 of 92% +/- 5.4%. All other physiological variables (HR, RR, body temperature, blood pressure) were within normal limits. Following each procedure, normal behavior was noted in all dogs. All the dogs were reunited into the pack at completion of their anesthetic procedures. An injectable medetomidine-ketamine-atropine combination with maintenance by gaseous isoflurane and oxygen provides an inexpensive, reliable anesthetic for captive African wild dogs.