31 resultados para cingulate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individuals with Autism Spectrum Disorder (ASD) are generally thought to have impaired attentional and executive function upon which all their cognitive and behaviour functions are based. Mental Rotation is a recognized visuo-spatial task, involving spatial working memory, known to involve activation in the fronto-parietal networks. To elucidate the functioning of fronto-parietal networks in ASD, the aim of this study was to use fMRI techniques with a mental rotation task, to characterize the underlying functional neural system. Sixteen male participants (seven highfunctioning autism or Asperger's syndrome; nine ageand performance IQ-matched controls) underwent fMRI. Participants were presented with 18 baseline and 18 rotation trials, with stimuli rotated 3- dimensionaUy (45°-180°). Data were acquired on a 3- Tesla scanner. The most widely accepted area reported to be involved in processing of visuo-spatial information. Posterior Parietal Cortex, was found to be activated in both groups, however, the ASD group showed decreased activation in cortical and subcortical frontal structures that are highly interconnected, including lateral and medial Brodmann area 6, frontal eye fields, caudate, dorsolateral prefrontal cortex and anterior cingulate. The suggested connectivity between these regions indicates that one or more circuits are impaired as a result of the disorder. In future it is hoped that we are able to identify the possible point of origin of this dysfunction, or indeed if the entire network is dysfunctional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whenever we plan, imagine, or observe an action, the motor systems that would be involved in preparing and executing that action are similarly engaged. The way in which such common motor activation is formed, however, is likely to differ depending on whether it arises from our own intentional selection of action or from the observation of another's action. In this study, we use time-resolved event-related functional MRI to tease apart neural processes specifically related to the processing of observed actions, the selection of our own intended actions, the preparation for movement, and motor response execution. Participants observed a finger gesture movement or a cue indicating they should select their own finger gesture to perform, followed by a 5-s delay period; participants then performed the observed or self-selected action. During the preparation and readiness for action, prior to initiation, we found activation in a common network of higher motor areas, including dorsal and ventral premotor areas and the pre-supplementary motor area (pre-SMA); the more caudal SMA showed greater activation during movement execution. Importantly, the route to this common motor activation differed depending on whether participants freely selected the actions to perform or whether they observed the actions performed by another person. Observation of action specifically involved activation of inferior and superior parietal regions, reflecting involvement of the dorsal visual pathway in visuomotor processing required for planning the action. In contrast, the selection of action specifically involved the dorsal lateral prefrontal and anterior cingulate cortex, reflecting the role of these prefrontal areas in attentional selection and guiding the selection of responses. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Individuals with autism spectrum disorders typically have normal visuospatial abilities but impaired executive functioning, particularly in abilities related to working memory and attention. The aim of this study was to elucidate the functioning of frontoparietal networks underlying spatial working memory processes during mental rotation in persons with autism spectrum disorders. Method: Seven adolescent males with normal IQ with an autism spectrum disorder and nine age- and IQ-matched male comparison subjects underwent functional magnetic resonance imaging scans while performing a mental rotation task. Results: The autism spectrum disorders group showed less activation in lateral and medial premotor cortex, dorsolateral prefrontal cortex, anterior cingulate gyrus, and caudate nucleus. Conclusions: The finding of less activation in prefrontal regions but not in parietal regions supports a model of dysfunction of frontostriatal networks in autism spectrum disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed the expression profile of two NMDAR1 mRNA isoform subsets. NR1(0xx) and NR1(1xx), in discrete regions of human cerebral cortex. The subsets are characterized by the absence or presence of a 21-amino acid N-terminal cassette. Reverse transcription polymerase chain reaction for NR1 isoforms was performed on total RNA preparations from spared and susceptible regions from 10 pathologically confirmed Alzheimer's disease (AD) cases and 10 matched controls. Primers spanning the splice insert yielded two bands, 342 bp (NR1(0xx)) and 405 bp (NR1(1xx)), on agarose gel electrophoresis. The bands were visualized with ethidium and quantified by densitometry. NR1(1xx) transcript expression was calculated as a proportion of the NR1(1xx) + NR1(0xx) total. Values were significantly lower in AD cases than in controls in mid-cingulate cortex, p < 0.01, superior temporal cortex, p < 0.01 and hippocampus, p similar to 0.05. Cortical proportionate NR1(1xx) transcript expression was invariant over the range of ages acid areas of controls tested, at similar to 50%. This was also true for AD motor and occipital cortex. Proportionate NR1(1xx) expression in AD cingulate and temporal cortex was lower at younger ages and increased with age: this regression was significantly different from that in the homotropic areas of controls. Variations in NR1 N-terminal cassette expression may underlie the local vulnerability to excitotoxic damage of some areas in the AD brain. Alternatively, changes in NR1 mRNA expression may arise as a consequence of the AD disease process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production. (C) 2001 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the picture-word interference task, naming responses are facilitated when a distractor word is orthographically and phonologically related to the depicted object as compared to an unrelated word. We used event-related functional magnetic resonance imaging (fMRI) to investigate the cerebral hemodynamic responses associated with this priming effect. Serial (or independent-stage) and interactive models of word production that explicitly account for picture-word interference effects assume that the locus of the effect is at the level of retrieving phonological codes, a role attributed recently to the left posterior superior temporal cortex (Wernicke's area). This assumption was tested by randomly presenting participants with trials from orthographically related and unrelated distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt naming responses occurred in the absence of scanner noise, allowing reaction time data to be recorded. Analysis of this data confirmed the priming effect. Analysis of the fMRI data revealed blood oxygen level-dependent signal decreases in Wernicke's area and the right anterior temporal cortex, whereas signal increases were observed in the anterior cingulate, the right orbitomedial prefrontal, somatosensory, and inferior parietal cortices, and the occipital lobe. The results are interpreted as supporting the locus for the facilitation effect as assumed by both classes of theoretical model of word production. In addition, our results raise the possibilities that, counterintuitively, picture-word interference might be increased by the presentation of orthographically related distractors, due to competition introduced by activation of phonologically related word forms, and that this competition requires inhibitory processes to be resolved. The priming effect is therefore viewed as being sufficient to offset the increased interference. We conclude that information from functional imaging studies might be useful for constraining theoretical models of word production. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an approach to rehabilitation of pain patients. The fundamental principles of the approach are (i) pain is an output of the brain that is produced whenever the brain concludes that body tissue is in danger and action is required, and (ii) pain is a multisystem output that is produced when an individual-specific cortical pain neuromatrix is activated. When pain becomes chronic, the efficacy of the pain neuromatrix is strengthened via nociceptive and non-nociceptive mechanisms, which means that less input, both nociceptive and non-nociceptive, is required to produce pain. The clinical approach focuses on decreasing all inputs that imply that body tissue is in danger and then on activating components of the pain neuromatrix without activating its output. Rehabilitation progresses to increase exposure to threatening input across sensory and non-sensory domains. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have revealed systematic differences in the pyramidal cell structure between functionally related cortical areas of primates. Trends for a parallel in pyramidal cell structure and functional complexity have been reported in visual, somatosensory, motor, cingulate and prefrontal cortex in the macaque monkey cortex. These specializations in structure have been interpreted as being fundamental in determining cellular and systems function, endowing circuits in these different cortical areas with different computational power. In the present study we extend our initial finding of systematic specialization of pyramidal cell structure in sensory-motor cortex in the macaque monkey [Cereb Cortex 12 (2002) 1071] to the vervet monkey. More specifically, we investigated pyramidal cell structure in somatosensory and motor areas 1/2, 5, 7, 4 and 6. Neurones in fixed, flat-mounted, cortical slices were injected intracellularly with Lucifer Yellow and processed for a light-stable 3,3'-diaminobenzidine reaction product. The size of, number of branches in, and spine density of the basal dendritic arbors varied systematically such that there was a trend for increasing complexity in arbor structure with progression through 1/2, 5 and 7. In addition, cells in area 6 were larger, more branched, and more spinous than those in area 4. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typically, cognitive abilities of humans have been attributed to their greatly expanded cortical mantle, granular prefrontal cortex (gPFC) in particular. Recently we have demonstrated systematic differences in microstructure of gPFC in different species. Specifically, pyramidal cells in adult human gPFC are considerably more spinous than those in the gPFC of the macaque monkey, which are more spinous than those in the gPFC of marmoset and owl monkeys. As most cortical dendritic spines receive at least one excitatory input, pyramidal cells in these different species putatively receive different numbers of inputs. These differences in the gPFC pyramidal cell phenotype may be of fundamental importance in determining the functional characteristics of prefrontal circuitry and hence the cognitive styles of the different species. However, it remains unknown as to why the gPFC pyramidal cell phenotype differs between species. Differences could be attributed to, among other things, brain size, relative size of gPFC, or the lineage to which the species belong. Here we investigated pyramidal cells in the dorsolateral gPFC of the prosimian galago to extend the basis for comparison. We found these cells to be less spinous than those in human, macaque, and marmoset. (c) 2005 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cortical midline glia are critical to the formation of the corpus callosum during development. The glial wedge is a Population of midline glia that is located at the corticoseptal boundary and expresses repulsive/growth-inhibitory molecules that guide callosal axons as they cross the midline. The glial wedge are the first cells within the cortex to express GFAP and thus may express molecules specific for glial maturation. The corticoseptal boundary is a genetically defined boundary between the cingulate cortex (dorsal telencephalon) and the septum (ventral telencephalon). The correct dorso-ventral position of this boundary is vital to the formation of both the glial wedge and the corpus callosum. Our aim was to identify genes expressed specifically within the glial wedge that might be involved in either glial differentiation, formation of the corticoseptal boundary or development of the corpus callosum. To identify such genes we have performed a differential display PCR screen comparing RNA isolated from the glial wedge with RNA isolated from control tissues such as the neocortex and septum, of embryonic day 17 mouse brains. Using 200 different combinations of primers, we identified and cloned 67 distinct gene fragments. In situ hybridization analysis confirmed the differential expression of many of the genes, and showed that clones G24F3, G39F8 and transcription factor LZIP have specific expression patterns in the telencephalon of embryonic and postnatal brains. An RNase Protection Assay (RPA) revealed that the expression of G39F8, G24173 and LZIP increase markedly in the telencephalon at E16 and continue to be expressed until at least PO, during the period when the corpus callosum is forming. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complex set of axonal guidance mechanisms are utilized by axons to locate and innervate their targets. In the developing mouse forebrain, we previously described several midline glial populations as well as various guidance molecules that regulate the formation of the corpus callosum. Since agenesis of the corpus callosum is associated with over 50 different human congenital syndromes, we wanted to investigate whether these same mechanisms also operate during human callosal development. Here we analyze midline glial and commissural development in human fetal brains ranging from 13 to 20 weeks of gestation using both diffusion tensor magnetic resonance imaging and immunohistochemistry. Through our combined radiological and histological studies, we demonstrate the morphological development of multiple forebrain commissures/decussations, including the corpus callosum, anterior commissure, hippocampal commissure, and the optic chiasm. Histological analyses demonstrated that all the midline glial populations previously described in mouse, as well as structures analogous to the subcallosal sling and cingulate pioneering axons, that mediate callosal axon guidance in mouse, are also present during human brain development. Finally, by Northern blot analysis, we have identified that molecules involved in mouse callosal development, including Slit, Robo, Netrin1, DCC, Nfia, Emx1, and GAP-43, are all expressed in human fetal brain. These data suggest that similar mechanisms and molecules required for midline commissure formation operate during both mouse and human brain development. Thus, the mouse is an excellent model system for studying normal and pathological commissural formation in human brain development. (c) 2006 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imagine (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MRI diffusion tensor imaging (DTI), optimized for measuring the trace of the diffusion tensor, was used to investigate microstructural changes in the brains of 12 individuals with schizophrenia compared with 12 matched control subjects. To control for the effects of anatomic variation between subject groups, all participants' diffusion images were non-linearly registered to standard anatomical space. Significant statistical differences in mean diffusivity (MD) measures between the two groups were determined on a pixel-by-pixel basis, using Gaussian random field theory. We found significantly elevated MD measures within temporal, parietal and prefrontal cortical regions in the schizophrenia group (P > 0.001), especially within the medial frontal gyrus and anterior cingulate. The dorsal medial and anterior nucleus of the thalamus, including the caudate, also exhibited significantly increased MD in the schizophrenia group (P > 0.001). This study has shown for the first time that MD measures offer an alternative strategy for investigating altered prefrontal-thalamic circuitry in schizophrenia. (c) 2006 Elsevier Inc. All rights reserved.