24 resultados para chirped-pulse amplification system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse transit time (PTT) is a non-invasive measure of arterial compliance. It can be used to assess instantaneous blood pressure (BP) changes in continual cardiovascular measurement such as during overnight respiratory sleep studies. In these studies, periodic changes in limb position can occur randomly. However, little is known about their possible effects on PTT monitored on the various limbs. The objective of this study was to evaluate PTT differences on all four limbs during two positional changes (lowering and raising of a limb). Ten healthy adults (seven male) with a mean age of 27.0 years were recruited in this study. The results showed that the limb that underwent a positional change had significant (p < 0.05) local PTT differences when compared to its nominal baseline value, whereas PTT changes in the other remaining limbs were insignificant (p > 0.05). The mean PTT value measured from a vertically-raised limb increased by 42.7 ms, while it decreased by 28.1 ms with a half-lowered limb. The PTT differences observed during positional change can be contributed to by the complex interactions between hydrostatic pressure changes, autonomic and local autoregulation experienced in these limbs. Hence the findings herein suggest that PTT is able to reflect local circulatory responses despite changes in the position of other limbs. This can be useful in prolonged clinical observations where limb movements are expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Atrial fibrillation in the elderly is common and potentially life threatening. The classical sign of atrial fibrillation is an irregularly irregular pulse. Objective The objective of this research was to determine the accuracy of pulse palpation to detect atrial fibrillation. Methods We searched Medline, EMBASE, and the reference lists of review articles for studies that compared pulse palpation with the electrocardiogram (ECG) diagnosis of atrial fibrillation. Two reviewers independently assessed the search results to determine the eligibility of studies, extracted data, and assessed the quality of the studies. Results We identified 3 studies (2385 patients) that compared pulse palpation with ECG. The estimated sensitivity of pulse palpation ranged from 91% to 100%, while specificity ranged from 70% to 77%. Pooled sensitivity was 94% (95% confidence interval [CI], 84%-97%) and pooled specificity was 72% (95% CI 69%-75%). The pooled positive likelihood ratio was 3.39, while the pooled negative likelihood ratio was 0.10. Conclusions Pulse palpation has a high sensitivity but relatively low specificity for atrial fibrillation. It is therefore useful for ruling out atrial fibrillation. It may also be a useful screen to apply opportunistically for previously undetected atrial fibrillation. Assuming a prevalence of 3% for undetected atrial fibrillation in patients older than 65 years, and given the test's sensitivity and specificity, opportunistic pulse palpation in this age group would detect an irregular pulse in 30% of screened patients, requiring further testing with ECG. Among screened patients, 0.2% would have atrial fibrillation undetected with pulse palpation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since its introduction, pulse oximetry has become a conventional clinical measure. Besides being arterial blood oxygen saturation (SpO2) measure, pulse oximeters can be used for other cardiovascular measurements, like heart rate (HR) estimations, derived from its photo plethysmographic (PPG) signals. The temporal coherence of the PPG signals and thereby HR estimates are heavily dependent on its minimal phase variability. A Masimo SET Rad-9TM, Novametrix Oxypleth and a custom designed PPG system were investigated for their relative phase variation. R-R intervals from electro-cardiogram (ECG) were recorded concurrently as reference. PPG signals obtained from the 3 systems were evaluated by comparing their respective beat-to-beat (B-B) intervals with the corresponding R-R estimates during a static test. For their relative B-B comparison to the ECG, Novametrix system differed 0.680.52% (p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first derivative of pressure over time (dP/dt) is a marker of left ventricular (LV) systolic function that can be assessed during cardiac catheterization and echocardiography. Radial artery dP/dt (Radial-dP/dt) has been proposed as a possible marker of LV systolic function (Nichols & O’Rourke, McDonald’s Blood Flow in Arteries) and we sought to test this hypothesis. Methods:We compared simultaneously recorded RadialdP/ dt (by high-fidelity tonometry) with LV-dP/dt (by highfidelity catheter and echocardiography parameters analogous to LV-dP/dt) in patients without aortic valve disease. In study 1, beat to beat Radial-dP/dt and LV-dP/dt were recorded at rest and during supine exercise in 12 males (aged 61±12 years) undergoing cardiac catheterization. In study 2, 2D-echocardiography and Radial-dP/dt were recorded in 59 patients (43 men; aged 64±10 years) at baseline and peak dobutamine-induced stress. Three measures at the basal septum were taken as being analogous to LV-dP/dt: (1) peak systolic strain rate, (2) strain rate (SR-dP/dt), and (3) tissue velocity during isovolumic contraction. Results: Study 1; there was a significant difference between resting LV-dP/dt (1461±383 mmHg/s) and Radial-dP/dt (1182±319 mmHg/s; P < 0.001), and a poor, but statistically significant, correlation between the variables (R2 = 0.006; P < 0.001) due to the high number of data points compared (n = 681). Similar results were observed during exercise. Study 2; there was a moderate association between baseline Radial-dP/dt and SRdP/ dt (R2 =−0.17; P < 0.01), but no significant relationship between Radial-dP/dt and all other echocardiographic measures analogous to LV-dP/dt at rest or peak stress (P > 0.05). Conclusion: The radial pressurewaveform is not a reliable marker of LV contractility.