42 resultados para cell cycle regulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NES1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G2/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G2 checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G2/M checkpoint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2F regulation is essential for normal cell cycle progression. Therefore, it is not surprising that squamous cell carcinoma cell lines (SCC) overexpress E2F1 and exhibit deregulated E2F activity when compared with normal keratinocytes. Indeed, deliberate E2F1 deregulation has been shown to induce hyperplasia and skin tumor formation. In this study, we report on a dual role for E2F as a mediator of keratinocyte proliferation and modulator of squamous differentiation. Overexpression of E2F isoforms in confluent primary keratinocyte cultures resulted in suppression of differentiation-associated markers. Moreover, we found that the DNA binding domain and the trans-activation domain of E2F1 are important in mediating suppression of differentiation. Use of a dominant/negative form of E2F1 ( E2F d/n) found that E2F inhibition alone is sufficient to suppress the activity of proliferation-associated markers but is not capable of inducing differentiation markers. However, if the E2F d/n is expressed in differentiated keratinocytes, differentiation marker activity is further induced, suggesting that E2F may act as a modulator of squamous differentiation. We therefore examined the effects of E2F d/n in a differentiation- insensitive SCC cell line. We found that treatment with the differentiating agent, 12-O-tetradecanoyl- phorbol-13-acetate (TPA), or expression of E2F d/n alone had no effect on differentiation markers. However, a combination of E2F d/n + TPA induced the expression of differentiation markers. Combined, these data indicate that E2F may play a key role in keratinocyte differentiation. These data also illustrate the unique potential of anti-E2F therapies in arresting proliferation and inducing differentiation of SCCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we investigate the role of the RNA-binding protein HuR during skeletal myogenesis. At the onset of myogenesis in differentiating C2C12 myocytes and in vivo in regenerating mouse muscle, HuR cytoplasmic abundance increased dramatically, returning to a predominantly nuclear presence upon completion of myogenesis. mRNAs encoding key regulators of myogenesis-specific transcription (myogenin and MyoD) and cell cycle withdrawal (p21), bearing AU-rich regions, were found to be targets of HuR in a differentiation-dependent manner. Accordingly, mRNA half-lives were highest during differentiation, declining when differentiation was completed. Importantly, HuR-overexpressing C2C12 cells displayed increased target mRNA expression and half-life and underwent precocious differentiation. Our findings underscore a critical function for HuR during skeletal myogenesis linked to HuR's coordinate regulation of muscle differentiation genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2 and B1 has been observed in a variety of tumour types, however, it is unknown whether this dysregulation is a consequence of, or a driving force for, unregulated cell proliferation. We have shown that the levels of hnRNPs A1, A2 and B1, but not A3, are modulated during the cell cycle of Colo16 squamous carcinoma cells and HaCaT immortalized keratinocytes, suggesting that A1, A2 and B1 are needed at particular cell cycle stages. However, the levels of hnRNP A1, A2 and B1 mRNAs were constant, indicating that regulation of protein levels was controlled at the level of translation. RNAi suppression of hnRNP At or A3 alone did not affect the proliferation of Colo16 cells but the proliferation rate was significantly reduced when both were suppressed simultaneously, or when either was suppressed together with hnRNP A2. Reducing hnRNP A2 expression in Colo16 and HaCaT cells by RNAi led to a non-apoptotic-related decrease in cell proliferation, reinforcing the view that this protein is required for cell proliferation. Suppression of hnRNP A2 in Colo16 cells was associated with increased p21 levels but p53 levels remained unchanged. In addition, expression of BRCA1 was downregulated, at both mRNA and protein levels. The observed effects of hnRNP A2 and its isoforms on cell proliferation and their correlation with BRCA1 and p21 expression suggest that these hnRNP proteins play a role in cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of cells generated by a proliferating stem or precursor cell can be influenced both by proliferation and by the degree of cell death/survival of the progeny generated. In this study, the extent to which cell survival controls progenitor number was examined by comparing the growth characteristics of neurosphere cultures derived from mice lacking genes for the death inducing Bcl-2 homologue Hara Kiri (Hrk), apoptosis-associated protein 1 (Apaf1), or the prosurvival nuclear factor-kappa B (NF kappa B) subunits p65, p50, or c-rel. We found no evidence that Hrk or Apaf1, and by inference the mitochondrial cell death pathway, are involved in regulating the number of neurosphere-derived progeny. However, we identified the p65p50 NF kappa B dimer as being required for the normal growth and expansion of neurosphere cultures. Genetic loss of both p65 and p50 NF kappa B subunits resulted in a reduced number of progeny but an increased proportion of neurons. No effect on cell survival was observed. This suggests that the number and fate of neural progenitor cells are more strongly regulated by cell cycle control than survival. (c) 2005 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of Ca2+ in the regulation of the cell cycle has been investigated mostly in studies assessing global cytosolic free Ca2+. Recent studies, however, have used unique techniques to assess Ca2+ in subcellular organelles, such as mitochondria, and in discrete regions of the cytoplasm. These studies have used advanced fluorescence digital imaging techniques and Ca2+-sensitive fluorescence probes, and/or targeting of Ca2+-sensitive proteins to intracellular organelles. The present review describes the results of some of these studies and the techniques used. The novel techniques used to measure Ca2+ in microdomains and intracellular organelles are likely to be of great use in future investigations assessing Ca2+ homeostasis during the cell cycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors. There are three genes that code for the PPAR isoforms: PPAR alpha, PPAR beta and PPAR gamma. In the present review, studies characterizing the various PPAR isoforms are discussed. Peroxisome proliferator-activated receptor alpha has been implicated in the lipid-lowering effects of the fibrate drugs. Peroxisome proliferator-activated receptor gamma has a clear role in adipocyte differentiation and is therapeutically targeted by the thiazolidinedione drugs for the treatment of type II diabetes. The physiological role of PPAR beta is less well understood but, as described in the present review, recent studies have implicated it with a role in colon cancer. In the present review, particular attention is focused on the role of PPAR in the regulation of expression of proteins associated with cell cycle control and tumorigenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

p53 is known to repress transcription of a number of genes, but the mechanism of p53 recruitment to these target genes is unknown. The c-myb proto-oncogene product (c-Myb) positively regulates proliferation of immature hematopoietic cells, whereas p53 blocks cell cycle progression. Here, we demonstrate that p53 inhibits c-Myb-induced transcription and transformation by directly binding to c-Myb. The ability of c-Myb to maintain the undifferentiated state of M1 cells was also suppressed by p53. p53 did not affect the ability of c-Myb to bind to DNA but formed a ternary complex with the corepressor mSin3A and c-Myb. Thus, p53 antagonizes c-Myb by recruiting mSin3A to down-regulate specific Myb target genes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the G2 phase cell cycle checkpoint arrest, the cdc25-dependent activation of cyclin B/cdc2, a critical step in regulating entry into mitosis, is blocked. Studies in yeast have demonstrated that the inhibition of cdc25 function involves 14-3-3 binding to cdc25, In humans, two cdc25 isoforms have roles in G2/M progression, cdc25B and cdc25C, both bind 14-3-3, Abrogating 14-3-3 binding to cdc25C attenuates the G2 checkpoint arrest, but the contribution of 14-3-3 binding to the regulation of cdc25B function is unknown. Here we demonstrate that high level over-expression of cdc25B in G2 checkpoint arrested cells can activate cyclin B/cdc2 and overcome the checkpoint arrest. Mutation of the major 14-3-3 binding site, S323, or removal of the N-terminal regulatory domain are strong activating mutations, increasing the efficiency with which the mutant forms of cdc25B not only overcome the arrest, but also initiate aberrant mitosis, We also demonstrate that 14-3-3 binding to the S323 site on cdc25B blocks access of the substrate cyclin/cdks to the catalytic site of the enzyme, thereby directly inhibiting the activity of cdc25B, This provides direct mechanistic evidence that 14-3-3 binding to cdc25B can regulate its activity, thereby controlling progression into mitosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyclin A/cdk2 is active during S and G2 phases of the cell cycle, but its regulation and function during G2 phase is poorly understood. In this study we have examined the regulation of cyclin A/cdk2 activity during normal G2 phase progression and in genotoxin-induced G2 arrest. We show that cyclin A/cdk2 is activated in early G2 phase by a cdc25 activity. In the G2 phase checkpoint arrest initiated in response to various forms of DNA damage, the cdc25-dependent activation of both cyclin A/cdk2 and cyclin B1/cdc2 is blocked. Ectopic expression of cdc25B, but not cdc25C, in G2 phase arrested cells efficiently activated both cyclin A/cdk2 and cyclin B1/cdc2. Finally, we demonstrate that the block in cyclin A/cdk2 activation in the G2 checkpoint arrest is independent of ATM/ATR. We speculate that the ATM/ ATR-independent block in G2 phase cyclin A/cdk2 activation may act as a further layer of checkpoint control, and that blocking G2 phase cyclin A/cdk2 activation contributes to the G2 phase checkpoint arrest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inactivation of p16(INK4a) and/or activation of cyclin-dependent kinase-4 (CDK4) are strongly associated with both susceptibility and progression in melanoma. Activating CDK4 mutations prevent the binding and inhibition of CDK4 by p16(INK4a). A second, more indirect role for CDK4 is in late G(1), where It may sequester the inhibitors p27(KIP1) or p21(CIP1) away from CDK2, and in doing so upregulate the CDK2 activity necessary for cells to proceed completely through G(1) into S phase. As the pivotal residues around the most predominant R24C activating CDK4 mutation are invariant between CDK2 and CDK4, we speculated that the pivotal arginine (position 22 in CDK2), or a nearby residue, may be mutated in some melanomas, resulting in the diminution of its binding and inhibition by p27(KIP1) or p21(CIP1). However, except for a silent polymorphism, we detected no variants within this region of the CDK2 gene in 60 melanoma cell lines. Thus, if CDK2 activity is dysregulated in melanoma it is likely to occur by a means other than mutations causing loss of direct inhibition. We also examined the expression of the CDK2 gene in melanoma cell lines, to assess its possible co-regulation with the gene for the melanocyte-lineage antigen pmel17, which maps less than 1 kb away in head to head orientation with CDK2 and may be transcribed off the same bidirectional promoter. However, expression of the genes is not co-regulated. (C) 2001 Lippincott Williams & Wilkins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ATM, the gene mutated in the human immunodeficiency disorder ataxia-telangiectasia (A-T), plays a central role in recognizing ionizing radiation damage in DNA and in controlling several cell cycle checkpoints. We describe here a murine model in which a nine-nucleotide in-frame deletion has been introduced into the Atm gene by homologous recombination followed by removal of the selectable marker cassette by Cre-loxP site-specific, recombination-mediated excision. This mouse, Abm-Delta SRI, was designed as a model of one of the most common deletion mutations (7636de19) found in A-T patients. The murine Atm deletion results in the loss of three amino acid residues (SRI; 2556-2558) but produces near full-length detectable Atm protein that lacks protein kinase activity. Radiosensitivity was observed in Atm-Delta SRI mice, whereas the immunological profile of these mice showed greater heterogeneity of T-cell subsets than observed in Atm(-/-) mice. The life span of Atm-Delta SRI mice was significantly longer than that of Atm(-/-) mice when maintained under nonspecific pathogen-free conditions. This can be accounted for by a lower incidence of thymic lymphomas in Atm-Delta SRI mice up to 40 weeks, after which time the animals died of other causes. The thymic lymphomas in Atm-Delta SRI mice were characterized by extensive apoptosis, which appears to be attributable to an increased number of cells expressing Fas ligand. A variety of other tumors including B-cell lymphomas, sarcomas, and carcinomas not seen in Atm(-/-) mice were observed in older Atm-Delta SRI animals. Thus, expression of mutant protein in Atm-Delta SRI knock-in mice gives rise to a discernibly different phenotype to Atm(-/-) mice, which may account for the heterogeneity seen in A-T patients with different mutations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and down-regulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Sp1 decreased. A causal relationship was established between these observations by demonstrating that up-regulation of Sp1 DNA binding activity by granulocyte/macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells can be explained by induction of ATM protein and kinase activity with time post-irradiation. Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.