197 resultados para c-Jun
Resumo:
The orthologous proteins of the stress-activated protein kinase-interacting 1 (Sin1) family have been implicated in several different signal transduction pathways. In this study, we have investigated the function of the full-length human Sin1 protein and a C-terminally truncated isoform, Sin 1 alpha, which is produced by alternative splicing. Immunoblot analysis using an anti-Sin 1 polyclonal antibody showed that full-length Sin I and several smaller isoforms are widely expressed. Sin 1 was demonstrated to bind to c-Jun N-terminal kinase (JNK) in vitro and in vivo, while no interaction with p38- or ERK1/2-family MAPKs was observed. The Sin1 alpha isoform could also form a complex with JNK in vivo. Despite localizing in distinct compartments within the cell, both Sin1 and Sin1 alpha co-localized with JNK, suggesting that the Sin1 proteins could recruit JNK. Over-expression of full-length Sin1 inhibited the activation of JNK by UV-C in DG75 cells, as well as basal JNK-activity in HEK293 cells. These data suggest that the human Sin1 proteins may act as scaffold molecules in the regulation of signaling by JNK. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Alzheimer's disease is characterized by the over-production and accumulation of amyloidogenic A beta peptide, which can induce cell death in vitro. It has been suggested that the death signal could be transduced by the pan neurotrophin receptor (p75NTR). p75NTR is well known for its ability to mediate neuronal death in neurodegenerative conditions and is inextricably linked with changes that occur in Alzheimer's disease. Moreover, A beta binds to p75NTR, activating signalling cascades. However, the complexity of p75NTR-mediated signalling, which does not always promote cell death, leaves open the possibly of A beta promoting death via an alternative signalling pathway or the regulation of other p75NTR-mediated actions. This review focuses on the interactions between A beta and p75NTR in the context of the broader p75NTR signalling field, and offers alternative explanations for how p75NTR might contribute to the aetiology of Alzheimer's disease.
Resumo:
We report in, this study that activation of the JNK by the growth factor, CSF-1 is critical for macrophage development, proliferation, and survival. Inhibition of JNK with two distinct classes of inhibitors, the pharmacological agent SP600125, or the peptide D-JNKI1 resulted in cell cycle inhibition with an arrest at the G(2)/M transition and subsequent apoptosis. JNK inhibition resulted in decreased expression of CSF-1R (c-fins) and Bcl-x(L) mRNA in mature macrophages and repressed CSF-1-dependent differentiation of bone marrow cells to macrophages. Macrophage sensitivity to JNK inhibitors may be linked to phosphorylation of the PU.1 transcription factor. Inhibition of JNK disrupted PUA binding to an element in the c-fins gene promoter and decreased promoter activity. Promoter activity could be restored by overexpression of PUA. A comparison of expression profiles of macrophages with 22 other tissue types showed that genes that signal JNK activation downstream of tyrosine kinase receptors, such as focal adhesion kinase, Nck-interacting kinase, and Rac1 and scaffold proteins are highly expressed in macrophages relative to other tissues. This pattern of expression may underlie the novel role of JNK in macrophages.
Resumo:
p53 is known to repress transcription of a number of genes, but the mechanism of p53 recruitment to these target genes is unknown. The c-myb proto-oncogene product (c-Myb) positively regulates proliferation of immature hematopoietic cells, whereas p53 blocks cell cycle progression. Here, we demonstrate that p53 inhibits c-Myb-induced transcription and transformation by directly binding to c-Myb. The ability of c-Myb to maintain the undifferentiated state of M1 cells was also suppressed by p53. p53 did not affect the ability of c-Myb to bind to DNA but formed a ternary complex with the corepressor mSin3A and c-Myb. Thus, p53 antagonizes c-Myb by recruiting mSin3A to down-regulate specific Myb target genes.
Resumo:
Protein kinase C (PKC) comprises a superfamily of isoenzymes, many of which are activated by cofactors such as diacylglycerol and phosphatidylserine. In order to be capable of activation, PKC must first undergo a series of phosphorylations. In turn, activated PKC phosphorylates a wide variety of intracellular target proteins and has multiple functions in signal transduced cellular regulation. A role for PKC activation had been noted in several renal diseases, but two that have had most investigation are diabetic nephropathy and kidney cancer. In diabetic nephropathy, an elevation in diacylglycerol and/or other cofactor stimulants leads to an increase in activity of certain PKC isoforms, changes that are linked to the development of dysfunctional vasculature. The ability of isoform-specific PKC inhibitors to antagonize diabetes-induced vascular disease is a new avenue for treatment of this disorder. In the development and progressive invasiveness of kidney cancer, increased activity of several specific isoforms of PKC has been noted. It is thought that this may promote the kidney cancer's inherent resistance to apoptosis, in natural regression or after treatments, or it may promote the invasiveness of renal cancers via cellular differentiation pathways. In general, however, a more complete understanding of the functions of individual PKC isoforms in the kidney, and development or recognition of specific inhibitors or promoters of their activation, will be necessary to apply this knowledge for treatment of cellular dysregulation in renal disease.
Resumo:
View along North-West elevation upper level.
Resumo:
As seen from pool deck.
Resumo:
Timber deck with built-in seat overlooking greater landscape beyond.
Resumo:
View back towards house from deck. with Iwan (right) and filter room (left).
Resumo:
Concrete framework for The Nest (North-West elevation), with timber framework yet to be added.
Resumo:
Entry stair in foreground.
Resumo:
As seen from The Nest above
Resumo:
As seen from upper level of house.
Resumo:
View to landcape beyond from lower level interior.