41 resultados para blood flow and vascular resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tonic immobility was induced in black tipped reef sharks (Carcharhinus melanoptera) and heart rate and ventral aortic blood pressure recorded. Without branchial irrigation, tonic immobility was correlated with a significant depression in blood pressure and heart rate irrespective of the sharks being in air or in water. Tonic immobility with branchial irrigation resulted in a significant increase in blood pressure in sharks in air, but not in water. Heart rate was unchanged when the gills were irrigated. Intra-arterial injections of atropine abolished the bradycardia and blood pressure rise associated with tonic immobility. We conclude that, during tonic immobility, sharks are able to receive afferent information from the ventilatory system and make appropriate responses via the vagus nerve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical experiments using a finite difference method were carried out to determine the motion of axisymmetric Taylor vortices for narrow-gap Taylor vortex flow. When a pressure gradient is imposed on the flow the vortices are observed to move with an axial speed of 1.16 +/- 0.005 times the mean axial flow velocity. The method of Brenner was used to calculate the long-time axial spread of material in the flow. For flows where there is no pressure gradient, the axial dispersion scales with the square root of the molecular diffusion, in agreement with the results of Rosen-bluth et al. for high Peclet number dispersion in spatially periodic flows with a roll structure. When a pressure gradient is imposed the dispersion increases by an amount approximately equal to 6.5 x 10(-4) (W) over bar(2)d(2)/D-m, where (W) over bar is the average axial velocity in the annulus, analogous to Taylor dispersion for laminar flow in an empty tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cardiac limb of the baroreflex loop was studied in the saltwater crocodile Crocodylus porosus, The classical pharmacological methodology using phenylephrine and sodium nitroprusside was used to trigger blood pressure changes, and the resulting alterations in heart rate were analysed quantitatively using a logistic function. Interindividual differences in resting heart rates and blood pressures were observed, but all seven animals displayed clear baroreflex responses. Atropine and sotalol greatly attenuated the response. A maximal baroreflex gain of 7.2 beats min(-1) kPa(-1) was found at a mean aortic pressure of 6.1 kPa, indicating the active role of the baroreflex in a wide pressure range encompassing hypotensive and hypertensive states. At the lowest mean aortic pressures (5.0 kPa), the synergistic role of the pulmonary-to-systemic shunt in buffering the blood pressure drop also contributes to blood pressure regulation, Pulse pressure showed a better correlation,vith heart rate and also a higher gain than mean aortic, systolic or diastolic pressures, and this is taken as an indicator of the existence of a differential control element working simultaneously with a linear proportional element.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological and kinematic data were collected from elite under-19 rugby union players to provide a greater understanding of the physical demands of rugby union. Heart rate, blood lactate and time-motion analysis data were collected from 24 players (mean +/- s((x) over bar): body mass 88.7 +/- 9.9 kg, height 185 +/- 7 cm, age 18.4 +/- 0.5 years) during six competitive premiership fixtures. Six players were chosen at random from each of four groups: props and locks, back row forwards, inside backs, outside backs. Heart rate records were classified based on percent time spent in four zones (>95%, 85-95%, 75-84%, <75% HRmax). Blood lactate concentration was measured periodically throughout each match, with movements being classified as standing, walking, jogging, cruising, sprinting, utility, rucking/mauling and scrummaging. The heart rate data indicated that props and locks (58.4%) and back row forwards (56.2%) spent significantly more time in high exertion (85-95% HRmax) than inside backs (40.5%) and outside backs (33.9%) (P < 0.001). Inside backs (36.5%) and outside backs (38.5%) spent significantly more time in moderate exertion (75-84% HRmax) than props and locks (22.6%) and back row forwards (19.8%) (P < 0.05). Outside backs (20.1%) spent significantly more time in low exertion (< 75% HRmax) than props and locks (5.8%) and back row forwards (5.6%) (P < 0.05). Mean blood lactate concentration did not differ significantly between groups (range: 4.67 mmol.l(-1) for outside backs to 7.22 mmol.l(-1) for back row forwards; P < 0.05). The motion analysis data indicated that outside backs (5750 m) covered a significantly greater total distance than either props and locks or back row forwards (4400 and 4080 m, respectively; P < 0.05). Inside backs and outside backs covered significantly greater distances walking (1740 and 1780 m, respectively; P < 0.001), in utility movements (417 and 475 m, respectively; P < 0.001) and sprinting (208 and 340 m, respectively; P < 0.001) than either props and locks or back row forwards (walking: 1000 and 991 m; utility movements: 106 and 154 m; sprinting: 72 and 94 m, respectively). Outside backs covered a significantly greater distance sprinting than inside backs (208 and 340 m, respectively; P < 0.001). Forwards maintained a higher level of exertion than backs, due to more constant motion and a large involvement in static high-intensity activities. A mean blood lactate concentration of 4.8-7.2 mmol.l(-1) indicated a need for 'lactate tolerance' training to improve hydrogen ion buffering and facilitate removal following high-intensity efforts. Furthermore, the large distances (4.2-5.6 km) covered during, and intermittent nature of, match-play indicated a need for sound aerobic conditioning in all groups (particularly backs) to minimize fatigue and facilitate recovery between high-intensity efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose-The goal of the present study was to identify risk factors for vascular disease in the elderly. Methods-We conducted a prospective study of control subjects from a population-based study of stroke in Perth, Western Australia, that was completed in 1989 to 1990 and used record linkage and a survey of survivors to identify deaths and nonfatal vascular events. Data validated through reference to medical records were analyzed with the use of Cox proportional hazards models. Results-Follow-up for the 931 subjects was 88% complete. By June 24, 1994, 198 (24%) of the subjects had died (96 from vascular disease), and there had been 45 nonfatal strokes or myocardial infarctions. The hazard ratio for diabetes exceeded 2.0 for all end points, whereas the consumption of meat >4 times weekly was associated with a reduction in risk of less than or equal to 30%. In most models, female sex and consumption of alcohol were associated with reduced risks, whereas previous myocardial infarction was linked to an increase in risk. Conclusions-There are only limited associations between lifestyle and major vascular illness in old age. Effective health promotion activities in early and middle life may be the key to a longer and healthier old age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents field measurements and numerical simulations of groundwater dynamics in the intertidal zone of a sandy meso-tidal beach. The study, focusing on vertical hydraulic gradients and pore water salinities, reveals that tides and waves provide important forcing mechanisms for flow and salt transport in the nearshore aquifer. Such forcing, interacting with the beach morphology, enhances the exchange between the aquifer and ocean. The spatial and temporal variations of vertical hydraulic gradients demonstrate the complexity and dynamic nature of the processes and the extent of mixing between fresh groundwater and seawater in a subterranean estuary''. These results provide evidence of a potentially important reaction zone in the nearshore aquifer driven by oceanic oscillations. Land-derived contaminants may undergo important biogeochemical transformations in this zone prior to discharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador: