151 resultados para bioanalytical method validation
Resumo:
Computer-aided tomography has been used for many years to provide significant information about the internal properties of an object, particularly in the medical fraternity. By reconstructing one-dimensional (ID) X-ray images, 2D cross-sections and 3D renders can provide a wealth of information about an object's internal structure. An extension of the methodology is reported here to enable the characterization of a model agglomerate structure. It is demonstrated that methods based on X-ray microtomography offer considerable potential in the validation and utilization of distinct element method simulations also examined.
Resumo:
Objective: The Temptation and Restraint Inventory (TRI) is commonly used to measure drinking restraint in relation to problem drinking behavior. However, as yet the TRI has not been validated in a clinical group with alcohol dependence. Method: Male (n = 111) and female (n = 57) inpatients with DSM-IV diagnosed alcohol dependence completed the TRI and measures of problem drinking severity, including the Alcohol Dependence Scale and the quantity, frequency and week total of alcohol consumed. Results: The factor structure of the TRI was replicated in the alcohol dependent sample. Cognitive Emotional Preoccupation (CEP), one of the two higher order factors of the TRI, demonstrated sound predictive power toward all dependence severity indices. The other higher order factor, Cognitive Behavioral Control (CBC), was related to frequency of drinking. There was limited support for the CEP/CBC interactional model of drinking restraint. Conclusions: Although the construct validity of the TRI was sound, the measure appears more useful in understanding the development, maintenance and severity of alcohol-related problems in nondependent drinkers. The TRI may show promise in detecting either continuous drinking or heavy episodic type dependent drinkers.
Resumo:
Objectives: To validate the WOMAC 3.1 in a touch screen computer format, which applies each question as a cartoon in writing and in speech (QUALITOUCH method), and to assess patient acceptance of the computer touch screen version. Methods: The paper and computer formats of WOMAC 3.1 were applied in random order to 53 subjects with hip or knee osteoarthritis. The mean age of the subjects was 64 years ( range 45 to 83), 60% were male, 53% were 65 years or older, and 53% used computers at home or at work. Agreement between formats was assessed by intraclass correlation coefficients (ICCs). Preferences were assessed with a supplementary questionnaire. Results: ICCs between formats were 0.92 (95% confidence interval, 0.87 to 0.96) for pain; 0.94 (0.90 to 0.97) for stiffness, and 0.96 ( 0.94 to 0.98) for function. ICCs were similar in men and women, in subjects with or without previous computer experience, and in subjects below or above age 65. The computer format was found easier to use by 26% of the subjects, the paper format by 8%, and 66% were undecided. Overall, 53% of subjects preferred the computer format, while 9% preferred the paper format, and 38% were undecided. Conclusion: The computer format of the WOMAC 3.1 is a reliable assessment tool. Agreement between computer and paper formats was independent of computer experience, age, or sex. Thus the computer format may help improve patient follow up by meeting patients' preferences and providing immediate results.
Resumo:
An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The critical process parameter for mineral separation is the degree of mineral liberation achieved by comminution. The degree of liberation provides an upper limit of efficiency for any physical separation process. The standard approach to measuring mineral liberation uses mineralogical analysis based two-dimensional sections of particles which may be acquired using a scanning electron microscope and back-scatter electron analysis or from an analysis of an image acquired using an optical microscope. Over the last 100 years, mathematical techniques have been developed to use this two dimensional information to infer three-dimensional information about the particles. For mineral processing, a particle that contains more than one mineral (a composite particle) may appear to be liberated (contain only one mineral) when analysed using only its revealed particle section. The mathematical techniques used to interpret three-dimensional information belong, to a branch of mathematics called stereology. However methods to obtain the full mineral liberation distribution of particles from particle sections are relatively new. To verify these adjustment methods, we require an experimental method which can accurately measure both sectional and three dimensional properties. Micro Cone Beam Tomography provides such a method for suitable particles and hence, provides a way to validate methods used to convert two-dimensional measurements to three dimensional estimates. For this study ore particles from a well-characterised sample were subjected to conventional mineralogical analysis (using particle sections) to estimate three-dimensional properties of the particles. A subset of these particles was analysed using a micro-cone beam tomograph. This paper presents a comparison of the three-dimensional properties predicted from measured two-dimensional sections with the measured three-dimensional properties.
Resumo:
Phytophthora diseases cause major losses to agricultural and horticultural production in Australia and worldwide. Most Phytophthora diseases are soilborne and difficult to control, making disease prevention an important component of many disease management strategies. Detection and identification of the causal agent, therefore, is an essential part of effective disease management. This paper describes the development and validation of a DNA-based diagnostic assay that can detect and identify 27 different Phytophthora species. We have designed PCR primers that are specific to the genus Phytophthora. The resulting amplicon after PCR is subjected to digestion by restriction enzymes to yield a specific restriction pattern or fingerprint unique to each species. The restriction patterns are compared with a key comprising restriction patterns of type specimens or representative isolates of 27 different Phytophthora species. A number of fundamental issues, such as genetic diversity within and among species which underpin the development and validation of DNA-based diagnostic assays, are addressed in this paper.
Resumo:
Background: In 1992, Frisch et al (Psychol Assess. 1992;4:92- 10 1) developed the Quality of Life Inventory (QOLI) to measure the concept of quality of life (QOL) because it has long been thought to be related to both physical and emotional well-being. However, the psychometric properties of the QOLI in clinical populations are still in debate. The present study examined the factor structure of QOLI and reported its validity and reliability in a clinical sample. Method: Two hundred seventeen patients with anxiety and depressive disorders completed the QOLI and additional questionnaires measuring symptoms (Zung Self-rating Depression Scale, Beck Anxiety Inventory, Fear Questionnaire, Depression Anxiety Stress Scale-Stress) and subjective well-being (Satisfaction With Life Scale) were also used. Results: Exploratory factor analysis via the principal components method, with oblique rotation, revealed a 2-factor structure that accounted for 42.73% of the total variance, and a subsequent confirmatory factor analysis suggested a moderate fit of the data to this model. The 2 factors appeared to describe self-oriented QOL and externally oriented QOL. The Cronbach alpha coefficients were 0.85 for the overall QOLI score, 0.81 for the first factor, and 0.75 for the second factor. Conclusion: Consistent evidence was also found to support the concurrent, discriminant, predictive, and criterion-related validity of the QOLI. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
There is currently no validated scoring system for quantification of airway secretions in children. A user friendly, valid scoring system of airway secretions during flexible bronchoscopy (FB) would be useful for comparative purposes in clinical medicine and research. The objective of this study was to validate our bronchoscopic secretion (BS) scoring system by examining the relationship between the amount of secretions seen at bronchoscopy with airway cellularity and microbiology. In 106 children undergoing FIB, the relationship of BS grades with bronchocalveolar lavage (BAL) cellularity and infective state (bacterial and viral infections) were examined using receptor operator curves (ROC). BAL was obtained according to European Respiratory Society guidelines; first lavage for microbiology and second lavage for cellularity Area under the ROC was significant for total cell count (TCC) and neutrophil % but not for lymphocyte %. BS grade significantly related to infection positive state (chi(2)(trend) = 5.85, P = 0,016). The area under the ROC for infection positive state versus BS grade was 0.645, 95% Cl 0.527-0.763. The BS scoring system is a valid method for quantifying airway secretions in children undergoing bronchoscopy The system related well to airway cellularity and neutrophilia, as well as to an airway infective state. However, the system is only complementary to cell counts and cultures and cannot replace these laboratory quantification techniques.
Resumo:
Web wrapper extracts data from HTML document. The accuracy and quality of the information extracted by web wrapper relies on the structure of the HTML document. If an HTML document is changed, the web wrapper may or may not function correctly. This paper presents an Adjacency-Weight method to be used in the web wrapper extraction process or in a wrapper self-maintenance mechanism to validate web wrappers. The algorithm and data structures are illustrated by some intuitive examples.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.
Resumo:
The level set method has been implemented in a computational volcanology context. New techniques are presented to solve the advection equation and the reinitialisation equation. These techniques are based upon an algorithm developed in the finite difference context, but are modified to take advantage of the robustness of the finite element method. The resulting algorithm is tested on a well documented Rayleigh–Taylor instability benchmark [19], and on an axisymmetric problem where the analytical solution is known. Finally, the algorithm is applied to a basic study of lava dome growth.
Resumo:
Inaccurate species identification confounds insect ecological studies. Examining aspects of Trichogramma ecology pertinent to the novel insect resistance management strategy for future transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA) of Western Australia required accurate differentiation between morphologically similar Trichogramma species. Established molecular diagnostic methods for Trichogramma identification use species-specific sequence difference in the internal transcribed spacer (ITS)-2 chromosomal region; yet, difficulties arise discerning polymerase chain reaction (PCR) fragments of similar base pair length by gel electrophoresis. This necessitates the restriction enzyme digestion of PCR-amplified ITS-2 fragments to readily differentiate Trichogramma australicum Girault and Trichogramma pretiosum Riley. To overcome the time and expense associated with a two-step diagnostic procedure, we developed a “one-step” multiplex PCR technique using species-specific primers designed to the ITS-2 region. This approach allowed for a high-throughput analysis of samples as part of ongoing ecological studies examining Trichogramma biological control potential in the ORIA where these two species occur in sympatry.
Resumo:
A narrow absorption feature in an atomic or molecular gas (such as iodine or methane) is used as the frequency reference in many stabilized lasers. As part of the stabilization scheme an optical frequency dither is applied to the laser. In optical heterodyne experiments, this dither is transferred to the RF beat signal, reducing the spectral power density and hence the signal to noise ratio over that in the absence of dither. We removed the dither by mixing the raw beat signal with a dithered local oscillator signal. When the dither waveform is matched to that of the reference laser the output signal from the mixer is rendered dither free. Application of this method to a Winters iodine-stabilized helium-neon laser reduced the bandwidth of the beat signal from 6 MHz to 390 kHz, thereby lowering the detection threshold from 5 pW of laser power to 3 pW. In addition, a simple signal detection model is developed which predicts similar threshold reductions.
Resumo:
Clifford Geertz was best known for his pioneering excursions into symbolic or interpretive anthropology, especially in relation to Indonesia. Less well recognised are his stimulating explorations of the modern economic history of Indonesia. His thinking on the interplay of economics and culture was most fully and vigorously expounded in Agricultural Involution. That book deployed a succinctly packaged past in order to solve a pressing contemporary puzzle, Java's enduring rural poverty and apparent social immobility. Initially greeted with acclaim, later and ironically the book stimulated the deep and multi-layered research that in fact led to the eventual rejection of Geertz's central contentions. But the veracity or otherwise of Geertz's inventive characterisation of Indonesian economic development now seems irrelevant; what is profoundly important is the extraordinary stimulus he gave to a generation of scholars to explore Indonesia's modern economic history with a depth and intensity previously unimaginable.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.