153 resultados para atom interferometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent developments in quantum and classical soliton theory, leading to the possibility of observing both classical and quantum parametric solitons in higher-dimensional environments. In particular, we consider the theory of three bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium this corresponds to the process of sum frequency generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. Potential applications include an ultrafast photonic AND-gate. The simplest quantum solitons or energy eigenstates (bound-state solutions) of the interacting field Hamiltonian are obtained exactly in three space dimensions. They have a point-like structure-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with the imposition of a momentum cut-off on the nonlinear couplings. The case of three-dimensional matter-wave solitons in coupled atomic/molecular Bose-Einstein condensates is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present numerical and analytical results for the Mollow probe absorption spectrum of a coherently driven two-level system in a narrow bandwidth squeezed vacuum field. The spectra are calculated for the case where the Rabi frequency of the driving field is much larger than the natural linewidth and the squeezed vacuum carrier frequency is detuned from the driving laser frequency. The driving laser is on resonance. We show that in a detuned squeezed vacuum the standard Mellow features are each split into triplets. The central components of each triplet are weakly dependent on the squeezing phase but the sidebands strongly depend on the phase and can have dispersive or absorptive/emissive profiles. We also derive approximate analytical expressions for the spectral features and find that the multi-peak structure of the spectrum can be interpreted either via the eigenfrequencies of a generalized Floquet Hamiltonian or in terms of three-photon transitions between dressed stales involving a probe field photon and a correlated photon pair from the squeezed vacuum field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the coupled-system approach we calculate the optical spectra of the fluorescence and transmitted fields of a two-level atom driven by a squeezed vacuum of bandwidths smaller than the natural atomic linewidth. We find that in this regime of squeezing bandwidths the spectra exhibit unique features, such as a hole burning and a three-peak structure, which do not appear for a broadband excitation. We show that the features are unique to the quantum nature of the driving squeezed vacuum field and donor appear when the atom is driven by a classically squeezed field. We find that a quantum squeezed-vacuum field produces squeezing in the emitted fluorescence field which appears only in the squeezing spectrum while there is no squeezing in the total field. We also discuss a nonresonant excitation and find that depending on the squeezing bandwidth there is a peak or a hole in the spectrum at a frequency corresponding to a three-wave-mixing process. The hole appears only for a broadband excitation and results from the strong correlations between squeezed-vacuum photons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider continuous observation of the nonlinear dynamics of single atom trapped in an optical cavity by a standing wave with intensity modulation. The motion of the atom changes the phase of the field which is then monitored by homodyne detection of the output field. We show that the conditional Hilbert space dynamics of this system, subject to measurement-induced perturbations, depends strongly on whether the corresponding classical dynamics is regular or chaotic. If the classical dynamics is chaotic, the distribution of conditional Hilbert space vectors corresponding to different observation records tends to be orthogonal. This is a characteristic feature of hypersensitivity to perturbation for quantum chaotic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of a two-level atom in a strong polychromatic field composed of a large number of equidistant frequency components is investigated. We calculate numerically, as well as analytically,:the stationary population inversion and show that the saturation of the atomic transition strongly depends on whether or not there is a central (resonant) frequency component in the driving field. We find that, in the presence of the central component, the atom can remain in the ground state even for a strong Rabi frequency of the driving field. In addition, we find that the inversion is sensitive to the relative phase between the frequency components. When the central component is suppressed, the atomic transition saturates with the Rabi frequency independent of the relative phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the stationary state of the system of two non-identical two-level atoms driven by a finite-bandwidth two-mode squeezed vacuum. It is well known that two identical two-level atoms driven by a broadband squeezed vacuum may decay to a pure state, called the pure two-atom squeezed state, and that the presence of the antisymmetric state can change its purity. Here, we show that for small interatomic separations the stationary state of two non-identical atoms is not sensitive to the presence of the antisymmetric state and is the pure two-atom squeezed state. This effect is a consequence of the fact that in the system of two non-identical atoms the antisymmetric state is no longer the trapping state. We also calculate the squeezing properties of the emitted field and find that the squeezing spectrum of the output field may exhibit larger squeezing than that in the input squeezed vacuum. Moreover, we show that squeezing in the total field attains the optimum value which can ever be achieved in the field emitted by two atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effects of driving a two-level atom by two intense field modes that have equal frequencies but are otherwise distinguishable; the intensity of one mode is also assumed to be greater than that of the other. We calculate first the dressed states of the system, and then its resonance fluorescence and Autler-Townes absorption spectra. We find that the energy spectrum of the doubly dressed atom consists of a ladder of doublet continua. These continua manifest themselves in the fluorescence spectrum, where they produce continua at the positions of the Mellow sideband frequencies omega(L)+/-2 Omega of the strong field, and in the Autler-Townes absorption spectrum, which becomes a two-continuum doublet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady-state resonance fluorescence spectrum of a two-level atom driven by a bichromatic field in a broadband squeezed vacuum is studied. When the carrier frequency of the squeezed vacuum is tuned to the frequency of the central spectral line, anomalous spectral features, such as hole burning and dispersive profiles, can occur at the central line. We show that these features appear for wider, and experimentally more convenient, ranges of the parameters than in the case of monochromatic excitation. ?he absence of a coherent spectral component at the central line makes any experimental attempt to observe these features much easier. We also discuss the general features of the spectrum. When the carrier frequency of the squeezed vacuum is tuned to the first odd or even sidebands, the spectrum is asymmetric and only the sidebands an sensitive to phase. For appropriate choices of the phase the linewidths or only the odd or even sidebands can be reduced. A dressed-stale interpretation is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial and temporal evolution of a depleted atomic distribution created by laser enhanced ionisation (LEI) was employed to determine both a diffusion coefficient for sodium (Na) and an electron (e(-)) and sodium ion recombination rate coefficient in an analytical air-C2H2 flame. A depleted distribution of neutral sodium atoms was produced in a flame by ionising approximately 80% of the irradiated sodium atoms in a well defined region using a two step LEI excitation scheme. Following depletion by ionisation, planar laser induced fluorescence (PLIF) images of the depleted region recorded the diffusion and decay of the depleted Na distribution for different depletion-probe delays. From measurements of the diffused width of the distribution, an accurate diffusion coefficient D = (1.19 +/- 0.03) x 10(-3) m(2) s(-1) for Na was determined in teh burnt gases of the flame. Measurements of the integrated fluorescence intensity in the depleted region for different depletion-probe delays were related to an increase in atomic sodium concentration caused by electron-ion recombination. At high concentrations (greater than or equal to 50 mu g ml(-1)), where the electron and ion concentrations in the depleted region were assumed equal, a recombination rate coefficient of 4.2 x 10(-9) cm(3) s(-1) was calculated. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum information theory, applied to optical interferometry, yields a 1/n scaling of phase uncertainty Delta phi independent of the applied phase shift phi, where n is the number of photons in the interferometer. This 1/n scaling is achieved provided that the output state is subjected to an optimal phase measurement. We establish this scaling law for both passive (linear) and active (nonlinear) interferometers and identify the coefficient of proportionality. Whereas a highly nonclassical state is required to achieve optimal scaling for passive interferometry, a classical input state yields a 1/n scaling of phase uncertainty for active interferometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different. angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine subnatural phase-dependent linewidths in the fluorescence spectrum of a three-level atom damped by a narrow-bandwidth squeezed vacuum in a cavity. Using the dressed-atom model approach of a strongly driven three-level cascade system, we derive the master equation of the system from which we obtain simple analytical expressions for the fluorescence spectrum. We show that the phase effects depend on the bandwidths of the squeezed vacuum and the cavity relative to the Rabi frequency of the driving fields. When the squeezing bandwidth is much larger than the Rabi frequency, the spectrum consists of five lines with only the central and outer sidebands dependent on the phase. For a squeezing bandwidth much smaller than the Rabi frequency the number of lines in the spectrum and their phase properties depend on the frequency at which the squeezing and cavity modes are centered. When the squeezing and cavity modes are centered on the inner Rabi sidebands, the spectrum exhibits five lines that are completely independent of the squeezing phase with only the inner Rabi sidebands dependent on the squeezing correlations. Matching the squeezing and cavity modes to the outer Rabi sidebands leads to the disappearance of the inner Rabi sidebands and a strong phase dependence of the central line and the outer Rabi sidebands. We find that in this case the system behaves as an individual two-level system that reveals exactly the noise distribution in the input squeezed vacuum. [S1050-2947(97)00111-X].