33 resultados para aldehyde and esters
Resumo:
To obtain methotrexate (MTX) derivatives with a balanced hydrolipophilic character, we synthesized a series of conjugates in which the drug was linked to lipoamino acid (LAA)-glucose residues (LAAG-MTX). These conjugates displayed increased solubility in polar media compared with the corresponding LAA-MTX conjugates previously described. In vitro biological testing of LAAG-MTX indicated that the introduction of the sugar moiety decreased the biological activity of these MTX conjugates. The tetradecyl derivative 6b, however, was effective in inhibiting the dihydrofolate reductase activity in vitro and showed an inhibitory effect on human lymphoblastoid cell growth. (C) 2001 Wiley-Liss, Inc.
Resumo:
There have been few replicated examples of genotype x environment interaction effects on behavioral variation or risk of psychiatric disorder. We review some of the factors that have made detection of genotype x environment interaction effects difficult, and show how genotype x shared environment interaction (GxSE) effects are commonly confounded with genetic parameters in data from twin pairs reared together. Historic data on twin pairs reared apart can in principle be used to estimate such GxSE effects, but have rarely been used for this purpose. We illustrate this using previously published data from the Swedish Adoption Twin Study of Aging (SATSA), which suggest that GxSE effects could account for as much as 25% of the total variance in risk of becoming a regular smoker. Since few separated twin pairs will be available for study in the future, we also consider methods for modifying variance components linkage analysis to allow for environmental interactions with linked loci.
Resumo:
Background: Although excessive ethanol consumption is known to lead to a variety of adverse effects in the heart, the molecular mechanisms of such effects have remained poorly defined. We hypothesized that posttranslational covalent binding of reactive molecular species to proteins occurs in the heart in response to acute ethanol exposure. Methods: The generation of protein adducts with several aldehydic species was examined by using monospecific antibodies against adducts with malondialdehyde (MDA), acetaldehyde (AA), MDA-AA hybrids, and hydroxyethyl radicals. Specimens of heart tissue were obtained from rats after intraperitoneal injections with alcohol (75 mmol/kg body weight) with or without pretreatment with cyanamide (0.05 mmol/kg body weight), an aldehyde dehydrogenase inhibitor. Results: The amounts of MDA and unreduced AA adducts were found to be significantly increased in the heart of the rats treated with ethanol, cyanamide, or both, whereas no other adducts were detected in statistically significant quantities. Immunohistochemical studies for characterization of adduct distribution revealed sarcolemmal adducts of both MDA and AA in the rats treated with ethanol and cyanamide in addition to intracellular adducts, which were also present in the group treated with ethanol alone. Conclusions: These findings support the role of enhanced lipid peroxidation and the generation of protein-aldehyde condensates in vivo as a result of excessive ethanol intake. These findings may have implications in the molecular mechanisms of cardiac dysfunction in alcoholics.
Resumo:
The solubility of ethyl propionate, ethyl butyrate, and ethyl isovalerate in supercritical carbon dioxide was measured at temperature ranging from 308.15 to 333.15 K and pressure ranging from 85 to 195 bar. At the same temperature, the solubility of these compounds increases with pressure. The crossover pressure region was also observed in this study. The experimental data were correlated by the semi-empirical Chrastil equation and Peng-Robinson equation of state (EOS) using several mixing rules. The Peng-Robinson EOS gives better solubility prediction than the empirical Chrastil equation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A total of 160 samples of 20 Australian-sourced feed ingredients of plant origin for pigs and poultry was analysed for total phosphorus and phytate-phosphorus contents and endogenous phytase activity. The majority of total P was present as phytate-phosphorus, and these concentrations were significantly correlated in 9 feed ingredients. The endogenous phytase activity in tested feed ingredients was negligible other than for wheat, its by-products and barley. Phytate-phosphorus was determined by a standard 'ferric chloride precipitation' method, which was satisfactory for individual feed ingredients, with the exception of lupins and faba beans. It appears that phytate is more difficult to extract from these two feedstuffs, possibly because of the affinity of phytate for protein. Ferric chloride precipitation methods are not suitable for phytate-phosphorus determinations of complete feed samples containing other sources of phosphorus, which is a distinct limitation. A lesser limitation is that these methods cannot distinguish between the various esters of myo-inositol phosphate present. Given the variation of phytate contents within ingredients, particularly wheat, the desirability of determining dietary substrate levels is emphasised to take full advantage of including exogenous phytases in pig and poultry diets to reduce phosphorus excretion and abate phosphorus pollution.
Resumo:
Background. Genetic influences have been shown to play a major role in determining the risk of alcohol dependence (AD) in both women and men; however, little attention has been directed to identifying the major sources of genetic variation in AD risk. Method. Diagnostic telephone interview data from young adult Australian twin pairs born between 1964 and 1971 were analyzed. Cox regression models were fitted to interview data from a total of 2708 complete twin pairs (690 MZ female, 485 MZ male, 500 DZ female, 384 DZ male, and 649 DZ female/male pairs). Structural equation models were fitted to determine the extent of residual genetic and environmental influences on AD risk while controlling for effects of sociodemographic and psychiatric predictors on risk. Results. Risk of AD was increased in males, in Roman Catholics, in those reporting a history of major depression, social anxiety problems, and conduct disorder, or (in females only) a history of suicide attempt and childhood sexual abuse; but was decreased in those reporting Baptist, Methodist, or Orthodox religion, in those who reported weekly church attendance, and in university-educated males. After allowing for the effects of sociodemographic and psychiatric predictors, 47 % (95 % CI 28-55) of the residual variance in alcoholism risk was attributable to additive genetic effects, 0 % (95 % CI 0-14) to shared environmental factors, and 53 % (95 % CI 45-63) to non-shared environmental influences. Conclusions. Controlling for other risk factors, substantial residual heritability of AD was observed, suggesting that psychiatric and other risk factors play a minor role in the inheritance of AD.
Resumo:
[GRAPHICS] A biosynthetic scheme rationalizing the formation of (+/-)-1,7-dioxaspiro[5.5]undecane (5) in the fruit fly species Bactrocera cacuminata and Bactrocera oleae (olive fruit fly) is presented. Incorporation studies with deuterium-labeled keto aldehyde (10), 1,5-nonanediol (11), and 1,5,9-nonanetriol (12), and our previous finding that both oxygen atoms of 5 originate from dioxygen, are strongly evidentiary. The racemic condition of the natural spiroacetal 5 is accounted for, and inter alia, it is demonstrated that dihydropyran (18) is not an important intermediate en route to 5.
Resumo:
Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.
Resumo:
The rhodamines are a highly fluorescent class of compound used in many different fields of research, from the lasing medium in dye lasers to biological stains and markers for cellular drug resistance. In this study, esters (2-7) of rhodamine 110 (1) were conveniently prepared via the addition of acetyl chloride to a solution of the free acid (1) in the appropriate alcohol. This method conferred several advantages over previous preparations, namely that for low boiling alcohols, simple evaporation of the solution afforded the ester in quantitative yield with no need for purification. For higher boiling point alcohols, a method has been developed which allows the separation of longer chain esters from the alcohol solvent.
Resumo:
Background: The low-activity variant of the aldehyde dehydrogenase 2 (ALDH2) gene found in East Asian populations leads to the alcohol flush reaction and reduces alcohol consumption and risk of alcohol dependence (AD). We have tested whether other polymorphisms in the ALDH2 gene have similar effects in people of European ancestry. Methods: Serial measurements of blood and breath alcohol, subjective intoxication, body sway, skin temperature, blood pressure, and pulse were obtained in 412 twins who took part in an alcohol challenge study. Participants provided data on alcohol reactions, alcohol consumption, and symptoms related to AD at the time of the study and subsequently. Haplotypes based on 5 single-nucleotide polymorphisms (SNPs) were used in tests of the effects of variation in the ALDH2 gene on alcohol metabolism and alcohol's effects. Results: The typed SNPs were in strong linkage disequilibrium and 2 complementary haplotypes comprised 83% of those observed. Significant effects of ALDH2 haplotype were observed for breath alcohol concentration, with similar but smaller and nonsignificant effects on blood alcohol. Haplotype-related variation in responses to alcohol, and reported alcohol consumption, was small and not consistently in the direction predicted by the effects on alcohol concentrations. Conclusions: Genetic variation in ALDH2 affects alcohol metabolism in Europeans. However, the data do not support the hypothesis that this leads to effects on alcohol sensitivity, consumption, or risk of dependence.
Resumo:
Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macro phages and lal(-/-) pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal(-/-) genetic background under control of the 7.2-kb c-fins promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis.
Resumo:
Studies detailing synthetic approaches to a variety of biosynthetically related vibsanin-type diterpenes (i.e. vibsanin E, 15-O-methylcyclovibsanin B, 3-hydroxy-vibsanin E, furano-vibsanin A, and 3-O-methylfuranovibsanin A) are discussed. Biogenetically modelled approaches are coupled with an in-vestigation of classical and modern six- to seven-membered ring-expansion protocols, which gain access to the central core of these natural products. (c) Wiley-VCH Verlag GmbH & Co.
Resumo:
Although poly(alpha-hydroxy esters), especially the PLGA family of lactic acid/glycolic acid copolymers, have many properties which make them promising materials for tissue engineering, the inherent chemistry of surfaces made from these particular polymers is problematic. In vivo, they promote a strong foreign-body response as a result of nonspecific adsorption and denaturation of serum proteins, which generally results in the formation of a nonfunctional fibrous capsule. Surface modification post-production of the scaffolds is an often-utilized approach to solving this problem, conceptually allowing the formation of a scaffold with mechanical properties defined by the bulk material and molecular-level interactions defined by the modified surface properties. A promising concept is the so-called blank slate: essentially a surface that is rendered resistant to nonspecific protein adsorption but can be readily activated to covalently bind bio-functional molecules such as extracellular matrix proteins, growth factors or polysaccharides. This study focuses on the use of the quartz crystal microbalance (QCM) to follow the layer-by-layer (LbL) electrostatic deposition of high molecular weight hyaluronic acid and chitosan onto PLGA surfaces rendered positively charged by aminolysis, to form a robust, protein-resistant coating. We further show that this surface may be further functionalized via the covalent attachment of collagen IV, which may then be used as a template for the self-assembly of basement membrane components from dilute Matrigel. The response of NIH-3T3 fibroblasts to these surfaces was also followed and shown to closely parallel the results observed in the QCM.
Resumo:
Imidoylketenes 11 and oxoketenimines 12 are generated by flash vacuum thermolysis of Meldrum's acid derivatives 9, pyrrolediones 17 and 18, and triazole 19 and are observed by IR spectroscopy. Ketenimine-3-carboxylic acid esters 12a are isolable at room temperature. Ketenes 11 and ketenimines 12 undergo rapid interconversion in the gas phase, and the ketenes cyclize to 4-quinolones 13. When using an amine leaving group in Meldrum's acid derivatives 9c, the major reaction products are aryliminopropadienones, ArN=C=C=C=O (15). The latter react with 1 equiv of nucleophile to produce ketenimines 12 and with 2 equiv to afford maIonic acid imide derivatives 16. N-Arylketenimine-C-carboxamides 12c cyclize to quinolones 13c via the transient amidinoketenes 11c at temperatures of 25-40 degrees C. This implies rapid interconversion of ketenes and ketenimines by a 1,3-shift of the dimethylamino group, even at room temperature. This interconversion explains previously poorly understood outcomes of the ynamine-isocyanate reaction. The solvent dependence of the tautomerism of 4-quinolones/4-quinolinols is discussed. Rotational barriers of NMe2 groups in amidoketenimines 12c and malonioc amides and amidines 16 (24) are reported.