18 resultados para Whey
The influence of bovine colostrum supplementation on exercise performance in highly trained cyclists
Resumo:
Purpose: The aim of this experiment was to investigate the influence of low dose bovine colostrum supplementation on exercise performance in cyclists over a 10 week period that included 5 days of high intensity training (HIT). Methods: Over 7 days of preliminary testing, 29 highly trained male road cyclists completed a VO2max test (in which their ventilatory threshold was estimated), a time to fatigue test at 110% of ventilatory threshold, and a 40 km time trial (TT40). Cyclists were then assigned to either a supplement (n = 14, 10 g/day bovine colostrum protein concentrate (CPC)) or a placebo group (n = 15, 10 g/day whey protein) and resumed their normal training. Following 5 weeks of supplementation, the cyclists returned to the laboratory to complete a second series of performance testing (week 7). They then underwent five consecutive days of HIT (week 8) followed by a further series of performance tests (week 9). Results: The influence of bovine CPC on TT40 performance during normal training was unclear (week 7: 1+/-3.1%, week 9: 0.1+/-2.1%; mean+/-90% confidence limits). However, at the end of the HIT period, bovine CPC supplementation, compared to the placebo, elicited a 1.9+/-2.2% improvement from baseline in TT40 performance and a 2.3+/-6.0% increase in time trial intensity (% VO2max), and maintained TT40 heart rate (2.5+/-3.7%). In addition, bovine CPC supplementation prevented a decrease in ventilatory threshold following the HIT period (4.6+/-4.6%). Conclusion: Low dose bovine CPC supplementation elicited improvements in TT40 performance during an HIT period and maintained ventilatory threshold following five consecutive days of HIT.
Resumo:
The cyclone stickiness test (CST) technique was applied to measure the stickiness temperature and relative humidity of whey, honey, and apple juice powders. A moisture sorption isotherm study was conducted to analyze the surface moisture content of whey powder. The glass transition temperatures of the sample powder were analyzed using differential scanning calorimetry (DSC). The stickiness results of these products were found within 20 degrees C above their surface glass transition temperatures, which is well within the normal temperature range for glass transition in general. The results obtained by the CST technique were found consistent with DSC values.
Resumo:
A new Thermal Mechanical Compression Test (TMCT) was applied for glass-rubber transition and melting analyses of food powders and crystals. The TMCT technique measures the phase change of a material based on mechanical changes during the transition. Whey, honey, and apple juice powders were analyzed for their glass-rubber transition temperatures. Sucrose and glucose monohydrate crystals were analyzed for their melting temperatures. The results were compared to the values obtained by conventional DSC and TMA techniques. The new TMCT technique provided the results that were very close to the conventional techniques. This technique can be an alternative to analyze glass-rubber transition of food, pharmaceutical, and chemical dry products.