38 resultados para Wheel slip


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A revised kinematic model for the motions of Africa and Iberia relative to Europe since the Middle Jurassic is presented in order to provide boundary conditions for Alpine-Mediterranean reconstructions. These motions were calculated using up-to-date kinematic data predominantly based on magnetic isochrons in the Atlantic Ocean and published by various authors during the last 15 years. It is shown that convergence of Africa with respect to Europe commenced during the Cretaceous Normal Superchron (CNS), between chrons MO and 34 (120-83 Ma). This motion was subjected to fluctuations in convergence rates characterised by two periods of relatively rapid convergence (during Late Cretaceous and Eocene-Oligocene times) that alternated with periods of slower convergence (during the Paleocene and since the Early Miocene). Distinct changes in plate kinematics are recognised in the motion of Iberia with respect to Europe, indicated by: (1) a Late Jurassic-Early Cretaceous left-lateral strike-slip motion; (2) Late Cretaceous convergence; (3) Paleocene quiescence; (4) a short period of right-lateral strike-slip motion; and (5) final Eocene-Oligocene convergence. Based on these results, it is speculated that a collisional episode in the Alpine orogeny at ca. 65 Ma resulted in a dramatic decrease in the relative plate motions and that a slower motion since the Early Miocene promoted extension in the Mediterranean back-arc basins. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconstruction of the evolution of the Tyrrhenian Sea shows that the major stage of rifting associated with the opening of this basin began at similar to10 Ma. It involved two episodes of back arc extension, which were induced by the rollback of a west dipping subducting slab. The first period of extension (10-6 Ma) was prominent in the northern Tyrrhenian Sea and in the western part of the southern Tyrrhenian Sea. The second period of extension, mainly affected the southern Tyrrhenian Sea, began in the latest Messinian (6-5 Ma) and has been accompanied by subduction rollback at rates of 60-100 km Myr(-1). Slab reconstruction, combined with paleomagnetic and paleogeographic constraints, indicates that in the central Apennines, the latest Messinian (6-5 Ma) arrival of a carbonate platform at the subduction zone impeded subduction and initiated a slab tear and major strike-slip faults. These processes resulted in the formation of a narrow subducting slab beneath the Ionian Sea that has undergone faster subduction rollback and induced extreme rates of back arc extension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reflexivity involves turning one's reflexive gaze oil discourse-turning language back on itself to see the Work it does in constituting the world. The subject/researcher sees simultaneously the object of her or his gaze and the means by which the object (which may include oneself as subject) is being constituted. The consciousness of self that reflexive writing sometimes entails may be seen to slip inadvertently into constituting the very (real) self that seems to contradict a focus on the constitutive power of discourse. This article explores this site of slippage and of ambivalence. In a collective biography oil the topic of reflexivity, the authors tell and write stories about reflexivity and in a doubled reflexive arc, examine themselves at work during the workshop. Examining their own memories and reflexive practices, they explore this place of slippage and provide theoretical and practical insight into what is going on in reflexive research and writing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A loose abrasive lapping technology was developed for truing and dressing ultrafine diamond cup wheels for grinding spherical end faces of fibre optic connectors. The relative densities of exposed grits and grit pull-outs measured from wheel surfaces prepared using the loose abrasive lapping and the bonded abrasive dressing were compared. It was found that the lapping method with loose abrasives produced wheel surfaces with more exposed grits and less grit pull-outs, especially for finer grit size wheels. For dressing ultrafine grit size wheels, the particle size of the lapping paste should be smaller than the wheel grit size to achieve a better result. It is also found that the wheels dressed using the lapping method demonstrate an excellent grinding performance. (C) 2004 Elsevier B.V.. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High removal rate (up to 16.6 mm(3)/s per mm) grinding of alumina and alumina-titania was investigated with respect to material removal and basic grinding parameters using a resin-bond 160 mu m grit diamond wheel at the speeds of 40 and 160 m/s, respectively. The results show that the material removal for the single-phase polycrystalline alumina and the two-phase alumina-titania composite revealed identical mechanisms of microfracture and grain dislodgement under the grinding conditioned selected. There were no distinct differences in surface roughness and morphology for both materials ground at either conventional or high speed. An increase in material removal rate did not necessarily worsen the surface toughness for the two materials at both speeds. Also the grinding forces for the two ceramics demonstrated similar characteristics at any grinding speeds and specific removal rates. Both normal and tangential grinding forces and their force ratios at the high speed were lower than those at the conventional speed, regardless of removal rates. An increase in specific removal rate caused more rapid increases in normal and tangential forces obtained at the conventional grinding speed than those at the high speed. Furthermore, it is found that the high speed grinding at all the removal rates exerted a great amount of coolant-induced normal forces in grinding zone, which were 4-6 times higher than the pure normal grinding forces. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports a parametric investigation and development of grinding technologies for micro aspherical mould inserts using parallel grinding method. The parametric investigation revealed that at nanometric scale the undeformed chip thickness has little influence on the surface finish of ground inserts. The grinding trace spacing has a slightly larger influence on the surface finish. A new technique was developed to true and dress the resin bonded micro wheels with mesh size of #3000, which produced a satisfactory wheel form accuracy and relatively high grain packing density. A form error compensation technique was also developed, with which mould inserts of submicron form accuracy were consistently produced. Using the developed technologies, micro aspherical inserts of diameters ranging from 200 mu m to 1000 mu m with surface finish of around 10 nm and form error of similar to 0.2-0.4 mu m were successfully fabricated. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different abrasive wear tests have been applied to materials with hardnesses ranging from 80 HV (aluminium) to 1700 HV (tungsten carbide). The tests were: dry sand rubber wheel (DSRbrW); a similar test using a steel wheel (DSStlW); a new combined impact-abrasion test (FIA). The DSRbrW results were as expected, giving generally decreasing wear with increasing hardness. White cast irons and tool steels containing coarse, hard carbide particles performed better than more homogeneous materials of comparable hardness. When normalized to load and distance, the DSStlW results for the homogeneous materials were similar to the DSRbrW results. The multi-phase materials performed poorly in the DSStlW test, with volume loss for high-speed steel (880 HV) higher than that of aluminium. Within this group, wear increased with increasing hardness. These unexpected results are explained in terms of (a) differential friction coefficients of wheel and specimen, (b) increased fracture of sand, and (c) introduction of microfracture wear mechanisms. The FIA combined impact-abrasion results lacked clear correlations with hardness. The span of relative wear rates was similar to that reported for materials in ball mills. White cast irons at maximum hardness performed fairly poorly and showed evidence of microfracture. (C) 1997 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dry sand-rubber wheel abrasion test was used to investigate the wear behaviour of polyurethanes. The dry sand-rubber wheel abrasion test (DSRW test) is an approved ASTM test designed primarily for testing metals, therefore, in this study the set of test conditions was optimized for use with polyurethane elastomers. The wear performance of polyurethanes was assessed for the range of Shore hardness 85A to 65D, and a correlation was identified between the wear rate and the sample hardness. Polyurethane elastomers can be separated into three classes according to their hardness and wear performance, and each class shows a different dependence on the specimen temperature. This work has implications for use of the DSRW test for the prediction of field performance of polyurethanes. (C) Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wheel traffic can lead to compaction and degradation of soil physical properties. This study, as part of a study of controlled traffic farming, assessed the impact of compaction from wheel traffic on soil that had not been trafficked for 5 years. A tractor of 40 kN rear axle weight was used to apply traffic at varying wheelslip on a clay soil with varying residue cover to simulate effects of traffic typical of grain production operations in the northern Australian grain belt. A rainfall simulator was used to determine infiltration characteristics. Wheel traffic significantly reduced time to ponding, steady infiltration rate, and total infiltration compared with non-wheeled soil, with or without residue cover. Non-wheeled soil had 4-5 times greater steady infiltration rate than wheeled soil, irrespective of residue cover. Wheelslip greater than 10% further reduced steady infiltration rate and total infiltration compared with that measured for self-propulsion wheeling (3% wheelslip) under residue-protected conditions. Where there was no compaction from wheel traffic, residue cover had a greater effect on infiltration capacity, with steady infiltration rate increasing proportionally with residue cover (R-2 = 0.98). Residue cover, however, had much less effect on infiltration when wheeling was imposed. These results demonstrated that the infiltration rate for the non-wheeled soil under a controlled traffic zero-till system was similar to that of virgin soil. However, when the soil was wheeled by a medium tractor wheel, infiltration rate was reduced to that of long-term cropped soil. These results suggest that wheel traffic, rather than tillage and cropping, might be the major factor governing infiltration. The exclusion of wheel traffic under a controlled traffic farming system, combined with conservation tillage, provides a way to enhance the sustainability of cropping this soil for improved infiltration, increased plant-available water, and reduced runoff-driven soil erosion.