158 resultados para Visual Object Recognition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Classic identity negative priming (NP) refers to the finding that when an object is ignored, subsequent naming responses to it are slower than when it has not been previously ignored (Tipper, S.P., 1985. The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. 37A, 571-590). It is unclear whether this phenomenon arises due to the involvement of abstract semantic representations that the ignored object accesses automatically. Contemporary connectionist models propose a key role for the anterior temporal cortex in the representation of abstract semantic knowledge (e.g., McClelland, J.L., Rogers, T.T., 2003. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310-322), suggesting that this region should be involved during performance of the classic identity NP task if it involves semantic access. Using high-field (4 T) event-related functional magnetic resonance imaging, we observed increased BOLD responses in the left anterolateral temporal cortex including the temporal pole that was directly related to the magnitude of each individual's NP effect, supporting a semantic locus. Additional signal increases were observed in the supplementary eye fields (SEF) and left inferior parietal lobule (IPL). (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system acheives a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of two experiments are reported that examined how people respond to rectangular targets of different sizes in simple hitting tasks. If a target moves in a straight line and a person is constrained to move along a linear track oriented perpendicular to the targetrsquos motion, then the length of the target along its direction of motion constrains the temporal accuracy and precision required to make the interception. The dimensions of the target perpendicular to its direction of motion place no constraints on performance in such a task. In contrast, if the person is not constrained to move along a straight track, the targetrsquos dimensions may constrain the spatial as well as the temporal accuracy and precision. The experiments reported here examined how people responded to targets of different vertical extent (height): the task was to strike targets that moved along a straight, horizontal path. In experiment 1 participants were constrained to move along a horizontal linear track to strike targets and so target height did not constrain performance. Target height, length and speed were co-varied. Movement time (MT) was unaffected by target height but was systematically affected by length (briefer movements to smaller targets) and speed (briefer movements to faster targets). Peak movement speed (Vmax) was influenced by all three independent variables: participants struck shorter, narrower and faster targets harder. In experiment 2, participants were constrained to move in a vertical plane normal to the targetrsquos direction of motion. In this task target height constrains the spatial accuracy required to contact the target. Three groups of eight participants struck targets of different height but of constant length and speed, hence constant temporal accuracy demand (different for each group, one group struck stationary targets = no temporal accuracy demand). On average, participants showed little or no systematic response to changes in spatial accuracy demand on any dependent measure (MT, Vmax, spatial variable error). The results are interpreted in relation to previous results on movements aimed at stationary targets in the absence of visual feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some motor tasks can be completed, quite literally, with our eyes shut. Most people can touch their nose without looking or reach for an object after only a brief glance at its location. This distinction leads to one of the defining questions of movement control: is information gleaned prior to starting the movement sufficient to complete the task (open loop), or is feedback about the progress of the movement required (closed loop)? One task that has commanded considerable interest in the literature over the years is that of steering a vehicle, in particular lane-correction and lane-changing tasks. Recent work has suggested that this type of task can proceed in a fundamentally open loop manner [1 and 2], with feedback mainly serving to correct minor, accumulating errors. This paper reevaluates the conclusions of these studies by conducting a new set of experiments in a driving simulator. We demonstrate that, in fact, drivers rely on regular visual feedback, even during the well-practiced steering task of lane changing. Without feedback, drivers fail to initiate the return phase of the maneuver, resulting in systematic errors in final heading. The results provide new insight into the control of vehicle heading, suggesting that drivers employ a simple policy of “turn and see,” with only limited understanding of the relationship between steering angle and vehicle heading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In studies of mirror-self-recognition subjects are usually surreptitiously marked on their head, and then presented with a mirror. Scores of studies have established that by 18 to 24 months, children investigate their own head upon seeing the mark in the mirror. Scores of papers have debated what this means. Suggestions range from rich interpretations (e.g., the development of self-awareness) to lean accounts (e.g., the development of proprioceptivevisual matching), and include numerous more moderate proposals (e.g., the development of a concept of one's face). In Study 1, 18-24-monthold toddlers were given the standard test and a novel task in which they were marked on their legs rather than on their face. Toddlers performed equivalently on both tasks, suggesting that passing the test does not rely on information specific to facial features. In Study 2, toddlers were surreptitiously slipped into trouser legs that were prefixed to a highchair. Toddlers failed to retrieve the sticker now that their legs looked different from expectations. This finding, together with the findings from a third study which showed that self-recognition in live video feedback develops later than mirror selfrecognition, suggests that performance is not solely the result of proprioceptive-visual matching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human nervous system constructs a Euclidean representation of near (personal) space by combining multiple sources of information (cues). We investigated the cues used for the representation of personal space in a patient with visual form agnosia (DF). Our results indicated that DF relies predominantly on binocular vergence information when determining the distance of a target despite the presence of other (retinal) cues. Notably, DF was able to construct an Euclidean representation of personal space from vergence alone. This finding supports previous assertions that vergence provides the nervous system with veridical information for the construction of personal space. The results from the current study, together with those of others, suggest that: (i) the ventral stream is responsible for extracting depth and distance information from monocular retinal cues (i.e. from shading, texture, perspective) and (ii) the dorsal stream has access to binocular information (from horizontal image disparities and vergence). These results also indicate that DF was not able to use size information to gauge target distance, suggesting that intact temporal cortex is necessary for learned size to influence distance processing. Our findings further suggest that in neurologically intact humans, object information extracted in the ventral pathway is combined with the products of dorsal stream processing for guiding prehension. Finally, we studied the size-distance paradox in visual form agnosia in order to explore the cognitive use of size information. The results of this experiment were consistent with a previous suggestion that the paradox is a cognitive phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial character of our reaching movements is extremely sensitive to potential obstacles in the workspace. We recently found that this sensitivity was retained by most patients with left visual neglect when reaching between two objects, despite the fact that they tended to ignore the leftward object when asked to bisect the space between them. This raises the possibility that obstacle avoidance does not require a conscious awareness of the obstacle avoided. We have now tested this hypothesis in a patient with visual extinction following right temporoparietal damage. Extinction is an attentional disorder in which patients fail to report stimuli on the side of space opposite a brain lesion under conditions of bilateral stimulation. Our patient avoided obstacles during reaching, to exactly the same degree, regardless of whether he was able to report their presence. This implicit processing of object location, which may depend on spared superior parietal-lobe pathways, demonstrates that conscious awareness is not necessary for normal obstacle avoidance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing body of evidence that the processes mediating the allocation of spatial attention within objects may be separable from those governing attentional distribution between objects. In the neglect literature, a related proposal has been made regarding the perception of (within-object) sizes and (between-object) distances. This proposal follows observations that, in size-matching and bisection tasks, neglect is more strongly expressed when patients are required to attend to the sizes of discrete objects than to the (unfilled) distances between objects. These findings are consistent with a partial dissociation between size and distance processing, but a simpler alternative must also be considered. Whilst a neglect patient may fail to explore the full extent of a solid stimulus, the estimation of an unfilled distance requires that both endpoints be inspected before the task can be attempted at all. The attentional cueing implicit in distance estimation tasks might thus account for their superior performance by neglect patients. We report two bisection studies that address this issue. The first confirmed, amongst patients with left visual neglect, a reliable reduction of rightward error for unfilled gap stimuli as compared with solid lines. The second study assessed the cause of this reduction, deconfounding the effects of stimulus type (lines vs. gaps) and attentional cueing, by applying an explicit cueing manipulation to line and gap bisection tasks. Under these matched cueing conditions, all patients performed similarly on line and gap bisection tasks, suggesting that the reduction of neglect typically observed for gap stimuli may be attributable entirely to cueing effects. We found no evidence that a spatial extent, once fully attended, is judged any differently according to whether it is filled or unfilled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The McGurk effect, in which auditory [ba] dubbed onto [go] lip movements is perceived as da or tha, was employed in a real-time task to investigate auditory-visual speech perception in prelingual infants. Experiments 1A and 1B established the validity of real-time dubbing for producing the effect. In Experiment 2, 4(1)/(2)-month-olds were tested in a habituation-test paradigm, in which 2 an auditory-visual stimulus was presented contingent upon visual fixation of a live face. The experimental group was habituated to a McGurk stimulus (auditory [ba] visual [ga]), and the control group to matching auditory-visual [ba]. Each group was then presented with three auditory-only test trials, [ba], [da], and [deltaa] (as in then). Visual-fixation durations in test trials showed that the experimental group treated the emergent percept in the McGurk effect, [da] or [deltaa], as familiar (even though they had not heard these sounds previously) and [ba] as novel. For control group infants [da] and [deltaa] were no more familiar than [ba]. These results are consistent with infants'perception of the McGurk effect, and support the conclusion that prelinguistic infants integrate auditory and visual speech information. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion is a powerful cue for figure-ground segregation, allowing the recognition of shapes even if the luminance and texture characteristics of the stimulus and background are matched. In order to investigate the neural processes underlying early stages of the cue-invariant processing of form, we compared the responses of neurons in the striate cortex (V1) of anaesthetized marmosets to two types of moving stimuli: bars defined by differences in luminance, and bars defined solely by the coherent motion of random patterns that matched the texture and temporal modulation of the background. A population of form-cue-invariant (FCI) neurons was identified, which demonstrated similar tuning to the length of contours defined by first- and second-order cues. FCI neurons were relatively common in the supragranular layers (where they corresponded to 28% of the recorded units), but were absent from layer 4. Most had complex receptive fields, which were significantly larger than those of other V1 neurons. The majority of FCI neurons demonstrated end-inhibition in response to long first- and second-order bars, and were strongly direction selective, Thus, even at the level of V1 there are cells whose variations in response level appear to be determined by the shape and motion of the entire second-order object, rather than by its parts (i.e. the individual textural components). These results are compatible with the existence of an output channel from V1 to the ventral stream of extrastriate areas, which already encodes the basic building blocks of the image in an invariant manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capacity limits in visual attention have traditionally been studied using static arrays of elements from which an observer must detect a target defined by a certain visual feature or combination of features. In the current study we use this visual search paradigm, with accuracy as the dependent variable, to examine attentional capacity limits for different visual features undergoing change over time. In Experiment 1, detectability of a single changing target was measured under conditions where the type of change (size, speed, colour), the magnitude of change, the set size and homogeneity of the unchanging distractors were all systematically varied. Psychometric function slopes were calculated for different experimental conditions and ‘change thresholds’extracted from these slopes were used in Experiment 2, in which multiple supra-threshold changes were made, simultaneously, either to a single or to two or three different stimulus elements. These experiments give an objective psychometric paradigm for measuring changes in visual features over time. Results favour object-based accounts of visual attention, and show consistent differences in the allocation of attentional capacity to different perceptual dimensions.