39 resultados para Vertical direction
Resumo:
We conduct a theoretical analysis of steady-state heat transfer problems through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. In particular, we derive analytical solutions for both the far field and near field of the system. In order to investigate the contribution of the forced advection to the total temperature of the system, two concepts, namely the critical Peclet number and the critical permeability of the system, have been presented and discussed in this paper. The analytical solution for the far field of the system indicates that if the pore-fluid pressure gradient in the crust is lithostatic, the critical permeability of the system can be used to determine whether or not the contribution of the forced advection to the total temperature of the system is negligible. Otherwise, the critical Peclet number should be used. For a crust of moderate thickness, the critical permeability is of the order of magnitude of 10(-20) m(2), under which heat conduction is the overwhelming mechanism to transfer heat energy, even though the pore-fluid pressure gradient in the crust is lithostatic. Furthermore, the lower bound analytical solution for the near field of the system demonstrates that the permeable vertical cracks in the middle crust can efficiently transfer heat energy from the lower crust to the upper crust of the Earth. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
In order to investigate the effect of material anisotropy on convective instability of three-dimensional fluid-saturated faults, an exact analytical solution for the critical Rayleigh number of three-dimensional convective flow has been obtained. Using this critical Rayleigh number, effects of different permeability ratios and thermal conductivity ratios on convective instability of a vertically oriented three-dimensional fault have been examined in detail. It has been recognized that (1) if the fault material is isotropic in the horizontal direction, the horizontal to vertical permeability ratio has a significant effect on the critical Rayleigh number of the three-dimensional fault system, but the horizontal to vertical thermal conductivity ratio has little influence on the convective instability of the system, and (2) if the fault material is isotropic in the fault plane, the thermal conductivity ratio of the fault normal to plane has a considerable effect on the critical Rayleigh number of the three-dimensional fault system, but the effect of the permeability ratio of the fault normal to plane on the critical Rayleigh number of three-dimensional convective flow is negligible.
Resumo:
Light is generally regarded as the most likely cue used by zooplankton to regulate their vertical movements through the water column. However, the way in which light is used by zooplankton as a cue is not well understood. In this paper we present a mathematical model of diel vertical migration which produces vertical distributions of zooplankton that vary in space and time. The model is used to predict the patterns of vertical distribution which result when animals are assumed to adopt one of three commonly proposed mechanisms for vertical swimming. First, we assume zooplankton tend to swim towards a preferred intensity of light. We then assume zooplankton swim in response to either the rate of change in light intensity or the relative rate of change in light intensity. The model predicts that for all three mechanisms movement is fastest at sunset and sunrise and populations are primarily influenced by eddy diffusion at night in the absence of a light stimulus. Daytime patterns of vertical distribution differ between the three mechanisms and the reasons for the predicted differences are discussed. Swimming responses to properties of the light field are shown to be adequate for describing diel vertical migration where animals congregate in near surface waters during the evening and reside at deeper depths during the day. However, the model is unable to explain how some populations halt their ascent before reaching surface waters or how populations re-congregate in surface waters a few hours before sunrise, a phenomenon which is sometimes observed in the held. The model results indicate that other exogenous or endogenous factors besides light may play important roles in regulating vertical movement.
Resumo:
A fully explicit formula for the eigenvalues of Casimir invariants for U-q(gl(m/n)) is given which applies to all unitary irreps. This is achieved by making some interesting observations on atypicality indices for irreps occurring in the tensor product of unitary irreps of the same type. These results have applications in the determination of link polynomials arising from unitary irreps of U-q(gl(m/n)).
Resumo:
Because the structure of the spine is inherently unstable, muscle activation is essential for the maintenance of trunk posture and intervertebral control when the limbs are moved. To investigate how the central nervous system deals with this situation the temporal components of the response of the muscles of the trunk were evaluated during rapid limb movement performed in response to a visual stimulus. Fine-wire electromyography (EMG) electrodes were inserted into transversus abdominis (TrA), obliquus internus abdominis (OI) and obliquus externus abdominis (OE) of 15 subjects under the guidance of real-time ultrasound imaging. Surface electrodes were placed over rectus abdominis (RA), lumbar multifidus (MF) and the three parts of deltoid. In a standing position, ten repetitions of shoulder flexion, abduction and extension were performed by the subjects as fast as possible in response to a visual stimulus. The onset of TrA EMG occurred in advance of deltoid irrespective of the movement direction. The time to onset of EMC activity of OI, OE, RA and MF varied with the movement direction, being activated earliest when the prime action of the muscle opposed the reactive forces associated with the specific limb movement. It is postulated that the non-direction-specific contraction of TrA may be related to the control of trunk. stability independent of the requirement for direction-specific control of the centre of gravity in relation to the base of support.
Resumo:
Experimental work has been carried out to investigate the effect of major operating variables on milling efficiency of calcium carbonate in laboratory and pilot size Tower and Sala Agitated (SAM) mills. The results suggest that the stirrer speed, media size and slurry density affect the specific energy consumption required to achieve the given product size. Media stress intensity analysis developed for high-speed horizontal mills was modified to include the effect of gravitational force in the vertical stirred mills such as the Tower and SAM units. The results suggest that this approach can be successfully applied for both mill types. For a given specific energy input, an optimum stress intensity range existed, for which the finest product was achieved. Finer product and therefore higher milling efficiency was obtained with SAM in the range of operating conditions tested. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This review compiles evidence for an alternative to the classical adenoma-carcinoma sequence in the evolution of colorectal cancer. It is suggested that between 30 and 50% of colorectal cancers are not initiated by mutation of the tumor suppressor gene APC, but through the epigenetic silencing of genes implicated in the control of differentiation, cell cycle control and DNA repair proficiency. The precursor polyps are often characterized by a serrated architecture, and include hyperplastic polyps, admixed polyps and serrated adenomas. The alternative pathway is heterogeneous and may culminate in cancers showing low or high level DNA microsatellite instability (MSI-L and MSI-H, respectively), and in cancers that are microsatellite stable (MSS). Cancers showing DNA MSI may be characterized by an accelerated evolution. Cancers in hereditary non-polyposis colorectal cancer show features of both classical (adenoma and APC mutation) and alternative pathways (rapid evolution, MSI-H and lack of chromosomal instability). (C) 2001 Blackwell Science Asia Pty Ltd.
Resumo:
We detail the automatic construction of R matrices corresponding to (the tensor products of) the (O-m\alpha(n)) families of highest-weight representations of the quantum superalgebras Uq[gl(m\n)]. These representations are irreducible, contain a free complex parameter a, and are 2(mn)-dimensional. Our R matrices are actually (sparse) rank 4 tensors, containing a total of 2(4mn) components, each of which is in general an algebraic expression in the two complex variables q and a. Although the constructions are straightforward, we describe them in full here, to fill a perceived gap in the literature. As the algorithms are generally impracticable for manual calculation, we have implemented the entire process in MATHEMATICA; illustrating our results with U-q [gl(3\1)]. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Time series of vertical sediment fluxes are derived from concentration time series in sheet flow under waves. While the concentrations C(z,t) vary very little with time for \z\ < 10d(50), the measured vertical sediment fluxes Q(zs)(z,t) vary strongly with time in this vertical band and their time variation follows, to some extent, the variation of the grain roughness Shields parameter 02,5(t). Thus, sediment distribution models based on the pickup function boundary condition are in some qualitative agreement with the measurements. However, the pickup function models are only able to model the upward bursts of sediment during the accelerating phases of the flow. They are, so far, unable to model the following strong downward sediment fluxes, which are observed during the periods of flow deceleration. Classical pickup functions, which essentially depend on the Shields parameter, are also incapable of modelling the secondary entrainment fluxes, which sometimes occur at free stream velocity reversal. The measured vertical fluxes indicate that the effective sediment settling velocity in the high [(0.3 < C(z,t) < 0.4] concentration area is typically only a few percent of the clear water settling velocity, while the measurements of Richardson and Jeronimo [Chem. Eng. Sci. 34 (1979) 1419], from a different physical setting, lead to estimates of the order 20%. The data does not support gradient diffusion as a model for sediment entrainment from the bed. That is, detailed modelling of the observed near-bed fluxes would require diffusivities that go negative during periods of flow deceleration. An observed general trend for concentration variability to increase with elevation close to the bed is also irreconcilable with diffusion models driven by a bottom boundary condition. (C) 2002 Published by Elsevier Science B.V.
Resumo:
We investigate the design of free-space optical interconnects (FSOIs) based on arrays of vertical-cavity surface-emitting lasers (VCSELs), microlenses, and photodetectors. We explain the effect of the modal structure of a multimodeVCSEL beam on the performance of a FSOI with microchannel architecture. A Gaussian-beam diffraction model is used in combination with the experimentally obtained spectrally resolved VCSEL beam profiles to determine the optical channel crosstalk and the signal-to-noise ratio (SNR) in the system. The dependence of the SNR on the feature parameters of a FSOI is investigated. We found that the presence of higher-order modes reduces the SNR and the maximum feasible interconnect distance. We also found that the positioning of a VCSEL array relative to the transmitter microlens has a significant impact on the SNR and the maximum feasible interconnect distance. Our analysis shows that the departure from the traditional confocal system yields several advantages including the extended interconnect distance and/or improved SNR. The results show that FSOIs based on multimode VCSELs can be efficiently utilized in both chip-level and board-level interconnects. (C) 2002 Optical Society of America.